Skip to main content
Log in

Investigation of the effect of wall material on the exchange of information between fluid and surface using the hybrid atomistic-continuum method

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the hybrid atomistic-continuum (HAC) method is used to investigate the properties of fluid flow inside a cavity on different surfaces. To extract the microscopic quantities of the flow on surfaces with different conditions (rough or smooth), a combination of Materials Studio 2017 and LAMMPS software and to extract the macroscopic results of the flow, OpenFOAM software has been used. In this paper, a strategy is used to reduce the thickness of atomic domain, which can reduce the time consuming associated with HAC solver by up to 17%. The interaction of argon gas with different surfaces of copper, iron, nickel, platinum, silicon, aluminum and amorphous polyethylene was also examined using the two mixing laws of Lorentz–Berthelot (LB) and Fender–Halsey (FH), and the effects of surface material and the type of mixing law on the formation of flow inside the cavity were investigated. Based on different simulations, it was shown that the FH mixing law can predict the potential energy more accurately than the LB mixing law. It was also shown that the TMAC increases by 4 and 3%, respectively, by creating the protrusions on the iron surface and creating the xenon coating on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yuanyuan L, Yuting L, Lanlan F, Gui L (2020) Metal alloy nanowire joining induced by femtosecond laser heating: a hybrid atomistic-continuum interpretation. Int J Heat Mass Transf 150:119287

    Article  Google Scholar 

  2. Lu Y, Huang J, Wang S, Lou J (2010) Cold welding of ultrathin gold nanowires. Nat Nanotechnol 5:218–224

    Article  Google Scholar 

  3. Valentín L, Betancourt J, Fonseca L, Huczko M (2013) A comprehensive study of thermoelectric and transport properties of β-silicon carbide nanowires. J Appl Phys 114:184301

    Article  Google Scholar 

  4. Li J, Wang C, Peng H, Wang M, Zhang R (2010) Vibrational and thermal properties of small diameter silicon nanowires. Appl Phys 108:063702

    Article  Google Scholar 

  5. Anderson T, Jackson R (1967) A fluid mechanical description of fluidized beds: equations of motion. Ind Chem Eng Fundam 6:527–534

    Article  Google Scholar 

  6. O’Connell S, Thompson P (1995) Molecular dynamics-continuum hybrid computations: a tool for studying complex fluid flows. Phys Rev E 52(6):5792–5795

    Article  Google Scholar 

  7. Nie X, Chen S, Robbins M (2004) A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow. J Fluid Mech 500:55–64

    Article  MATH  Google Scholar 

  8. Lin J, Chen S, Robbins M (2007) A continuum-atomistic simulation of heat transfer in micro- and nano-flows. J Comput Phys 227(1):279–291

    Article  MATH  Google Scholar 

  9. Nie X, Chen S, Robbins M (2004) Hybrid continuum-atomistic simulation of singular corner flow. Phys Fluids 16(10):3579–3591

    Article  MATH  Google Scholar 

  10. Hadjiconstantinou NG, Patera AT (1997) Heterogeneous atomistic-continuum representations for dense fluid systems. Int J Mod Phys C 8(4):967–976

    Article  Google Scholar 

  11. Flekkøy E, Wagner G, Feder J (2000) Hybrid model for combined particle and continuum dynamics. Europhys Lett 52(3):271–279

    Article  Google Scholar 

  12. Delgado-Buscalioni R, Coveney P (2003) Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. Phys Rev E 67(4):046704

    Article  Google Scholar 

  13. Nie X, Robbins MO, Chen S (2006) Resolving singular forces in cavity flow: multiscale modeling from atomic to millimeter scales. Phys Rev Lett 96(13):134501

    Article  Google Scholar 

  14. Werder T, Walther JH, Koumoutsakos P (2005) Hybrid atomistic-continuum method for the simulation of dense fluid flows. J Comput Phys 205(1):373–390

    Article  MathSciNet  MATH  Google Scholar 

  15. Kalweit M, Drikakis D (2008) Coupling strategies for hybrid molecular-continuum simulation methods. J Mech Eng Sci 222(5):797–806

    Article  Google Scholar 

  16. Kalweit M, Drikakis D (2008) Multiscale methods for micro/nano flows and materials. J Comput Theor Nanosci 5(9):1923–1938

    Article  Google Scholar 

  17. Zhou W, Luan H, He Y, Sun J, Tao W (2014) A study on boundary force model used in multiscale simulations with non-periodic boundary condition. Microfluid Nanofluid 16(3):587–595

    Article  Google Scholar 

  18. Delgado-Buscalioni R, Flekkøy EG, Coveney PV (2005) Fluctuations and continuity in particle-continuumhybrid simulations of unsteady flows based on flux-exchange. Europhys Lett 69(6):959–965

    Article  Google Scholar 

  19. Wang Q, Ren X-G, Xu X-H, Li C, Ji H-Y, Yang X-J (2017) Coupling strategies investigation of hybrid atomistic-continuum method based on state variable coupling. Adv Master Sci Eng 2017:1014636

    Google Scholar 

  20. Cosden IA, Lukes JR (2013) A hybrid atomistic–continuum model for fluid flow using LAMMPS and OpenFOAM. Comput Phys Commun 184:1958–1965

    Article  Google Scholar 

  21. Hadjiconstantinou NG, Garcia AL, Bazant MZ, He G (2003) Statistical error in particle simulations of hydrodynamic phenomena. J Comput Phys 187(1):274–297

    Article  MathSciNet  MATH  Google Scholar 

  22. Delgado-Buscalioni R, Coveney P (2003) Usher: an algorithm for particle insertion in dense fluids. J Chem Phys 119(2):978–987

    Article  Google Scholar 

  23. Thompson A, Troian S (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389(6649):360–362

    Article  Google Scholar 

  24. Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80(3):839–883

    Article  Google Scholar 

  25. Bian X, Deng M, Tang Y-H, Karniadakis GE (2016) Analysis of hydrodynamic fluctuations in heterogeneous adjacent multidomains in shear flow. Phys Rev E 93(3):033312

    Article  MathSciNet  Google Scholar 

  26. Ren X-G, Wang Q, Xu L-Y, Yang W-J, Xu X-H (2017) Hacpar: an efficient parallel multiscale framework for hybrid atomistic-continuum simulation at the micro- and nanoscale. Adv Mech Eng 9(8):1–13

    Article  Google Scholar 

  27. Al-Matar A, Rockstraw D (2004) A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters. J Comput Chem 25(5):660–668

    Article  Google Scholar 

  28. Sha H, Faller R, Tetiker G, Woytowitz P (2018) Molecular simulation study of aluminum-noble gas interfacial thermal accommodation coefficients. AIChE J 64(1):338–345

    Article  Google Scholar 

  29. Kamara KK, Kumar R (2020) Development of empirical relationships for surface accommodation coefficients through investigation of nano-poiseuille flows using molesular dynamicd method. Microfluid Nanofluid 24(9):1–14

    Google Scholar 

  30. Klemens PG, Williams RK (1986) Thermal conductivity of metals and alloys. Int Met Rev 31(1):197–215

    Article  Google Scholar 

  31. Yen TH, Soong CY, Tzeng PY (2007) Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows. Microfluid Nanofluid 3(6):665–675

    Article  Google Scholar 

  32. Marcantoni LFG, Tamagno JP, Elaskar SA (2012) High speed flow simulation using openFOAM. Mecan Comput 31(16):2939–2959

    Google Scholar 

  33. Issa R (1985) Solution of the implicity discretised fluid flow equations by operator-splitting. J Comput Phys 62(1):40–65

    Article  Google Scholar 

  34. Tysanner MW, Garcia AL (2004) Measurement bias of fluid velocity in molecular simulations. J Comput Phys 196(1):173–183

    Article  MATH  Google Scholar 

  35. Wang Q, Ren XG, Xu XH, Li C, Ji HY, Yang XJ (2017) Coupling strategies investigation of hybrid atomistic-continuum method based on state variable coupling. Adv Mater Sci Eng 2017:1–21

    Article  Google Scholar 

  36. Mao Y, Zhang Y, Chen CL (2015) Atomistic-continuum hybrid simulation of heat transfer between argon flow and copper plates. J Heat Transfer 137(9):091011

    Article  Google Scholar 

  37. Sun J, He Y-L, Tao W-Q (2010) Scale effect on flow and thermal boundaries in micro-/nano-channel flow using molecular dynamics-continuum hybrid simulation method. Int J Numer Methods Eng 81(2):207–228

    Article  MathSciNet  MATH  Google Scholar 

  38. Ko S-H, Kim N, Nikitopoulos DE, Moldovan D, Jha S (2010) Parametric study of a multiscale fluidic system using a hybrid CFD-MD approach. In: Proceedings of the 5th European conference on computational fluid dynamics (ECCOMAS CFD ’10)

  39. Delgado-Buscalioni R, Coveney PV (2004) Hybrid molecular-continuum fluid dynamics. Philos Trans R Soc Lond Ser A: Math, Phys Eng Sci 362(1821):1639–1654

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang YC, He GW (2007) A dynamic coupling model for hybrid atomistic-continuum computations. Chem Eng Sci 62(13):3574–3579

    Article  Google Scholar 

  41. Asproulis N, Drikakis D (2013) An artificial neural network-based multiscale method for hybrid atomistic-continuum simulations. Microfluid Nanofluid 15:559–574

    Article  Google Scholar 

  42. Zhou WJ, Yu ZQ, Li ZZ, Wei J, Tao W (2017) Atomistic-continuum hybrid simulations for compressible gas flow in a parallel nanochannel. Int J Heat Mass Transf 108:2100–2106

    Article  Google Scholar 

  43. Daun KJ, Sipkens TA, Titantah JT, Karttunen M (2013) Thermal accommodation coefficients for laser-induced incandescence sizing of metal nanoparticles in monatomic gases. Appl Phys B 112(3):409–420

    Article  Google Scholar 

  44. Daun KJ, Karttunen M, Titantah JT (2011) Molecular dynamics simulation of thermal accommodation coefficients for laser-induced incandescence sizing of Nickle nanoparticles. ASME Int Mech Eng Congr Expos 54976:307–315

    Google Scholar 

  45. Yousefi-Nasab S, Safdari J, Karimi-Sabet J, Mallah MH (2021) Molecular dynamics simulations on the scattering of heavy gases on the composite surfaces. Vacuum 183:109864

    Article  Google Scholar 

  46. Yousefi-Nasa S, Safdari J, Karimi-Sabet J, Norouzi A, Amini E (2019) Determination of momentum accommodation coefficients and velocity distribution function for noble gas-polymeric surface interactions using molecular dynamics simulation. Appl Surf Sci 493:766–778

    Article  Google Scholar 

  47. Sun H, Liu Z, Xin Q, Zhang J, Cao BY (2020) Thermal and flow characterization in nanochannels with tunable surface wettability: a comprehensive molecular dynamics study. Numer Heat Transf, Part A: Appl 78(6):1–20

    Article  Google Scholar 

  48. Prabha SK, Sathian SP (2012) Molecular dynamics study of Poiseuille flow in a nanochannel and calculation of energy and momentum accommodation coefficients. Phys Rev E 85(4):041201

    Article  Google Scholar 

  49. Cagin T, Qi Y, Li H, Kimura Y, Ikeda H (1999) Molecular dynamics simulation of supercooled liquid metals. MRS Ser 554:43

    Google Scholar 

  50. Maghfiroh CY, Arkundato A, Maulina W (2020) Parameters (σ, ε) of Lennard-Jones for Fe, Ni, Pb for potential and Cr based on melting point values using the molecular dynamics method of the Lammps program. J Phys Confer Ser 1491(1):012022

    Article  Google Scholar 

  51. Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31(8):5262

    Article  Google Scholar 

  52. Bhadauria R, Aluru NR (2013) A quasi-continuum hydrodynamic model for slit shaped nanochannel flow. J Chem Phys 139(7):074109

    Article  Google Scholar 

  53. Mane T, Bhat P, Yang V (2018) Energy accommodation under non-equi;ibrium conditions for aluminum-inert gas systems. Surf Sci 677:135–148

    Article  Google Scholar 

  54. Puri P, Yang V (2007) Effect of particle size on melting of aluminum at nano scales. J Phys Chem C 111(32):11776–11783

    Article  Google Scholar 

  55. Karasawa N, Dasgupta S, Goddard WA (1991) Mechanical properties and force field parameters for polyethylene crystal. J Phys Chem 95(6):2260–2272

    Article  Google Scholar 

  56. Hossain D, Tschopp M, Ward DK, Bouvard JL, Wang P (2010) Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 51(25):6071–6083

    Article  Google Scholar 

  57. Gronych T, Ulman R, Peksa L, Řepa P (2004) Measurements of the relative momentum accommodation coefficient for different gases with a viscosity vacuum gauge. Vacuum 73(2):275–279

    Article  Google Scholar 

  58. Tekasakul P, Bentz JA, Tompson RV, Loyalka SK (1996) The spinning rotor gauge: Measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients. J Vac Sci Technol, A: Vac, Surf Films 14(5):2946–2952

    Article  Google Scholar 

  59. Acharya T, Falgoust J, Schoegl I, Martin MJ (2019) Measurement of Variation of Momentum Accommodation Coefficients with Molecular Mass and Structure. J Thermophys Heat Transfer 33(3):773–778

    Article  Google Scholar 

  60. Nedea SV, van Steenhoven AA, Markvoort AJ, Spijker P, Giordano D (2014) Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro-or nanochannel: Heat flux predictions using combined molecular dynamics and Monte Carlo techniques. Phys Rev E 89(5):053012

    Article  Google Scholar 

  61. Hemadri V, Agrawal A, Bhandarkar UV (2018) Determination of tangential momentum accommodation coefficient and slip coefficients for rarefied gas flow in a microchannel. Sādhanā 43(10):1–7

    Article  MathSciNet  Google Scholar 

  62. Ewart T, Perrier P, Graur I, Méolans JG (2007) Tangential momemtum accommodation in microtube. Microfluid Nanofluid 3(6):689–695

    Article  Google Scholar 

  63. Acharya T, Falgoust J, Martin MJ, Rasmussen RE (2015) Measurement of continuum breakdown during disk spindown in low-pressure air. J Thermophys Heat Transfer 29(2):281–290

    Article  Google Scholar 

  64. Selden N, Gimelshein N, Gimelshein S, Ketsdever A (2009) Analysis of accommodation coefficients of noble gases on aluminum surface with an experimental/computational method. Phys Fluids 21(7):073101

    Article  MATH  Google Scholar 

  65. Trott WM, Castañeda JN, Torczynski JR, Gallis MA, Rader DJ (2011) An experimental assembly for precise measurement of thermal accommodation coefficients. Rev Sci Instrum 82(3):035120

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Nuclear Fuel Cycle Research School at Atomic Energy Organization of Iran, P.O. Box: 1439955931.

Funding

There are no funding sources for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Yousefi-Nasab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi-Nasab, S., Karimi-Sabet, J. & Safdari, J. Investigation of the effect of wall material on the exchange of information between fluid and surface using the hybrid atomistic-continuum method. Comp. Part. Mech. 10, 565–584 (2023). https://doi.org/10.1007/s40571-022-00512-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00512-7

Keywords

Navigation