Skip to main content

Advertisement

Log in

Statistical modelling and optimization of AL/CNT composite using response surface-desirability approach

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Nowadays, various methods are being formed on new composites and nanocomposite compounds. Investigating the properties of nanocomposites and finding their optimal properties pave the way for a better use of them. In this study, first, mechanical molecular dynamics method is used to investigate mechanical properties of aluminum/carbon nanotubes (Al-CNT) nanocomposite, then, the effect of temperature change, strain rate, and chirality of nanotubes on the elastic modulus and ultimate stress of nanocomposite have been investigated. However, in order to simultaneously investigate these three parameters on the properties of nanocomposite and to find an optimal point for the elastic modulus and ultimate stress, the experimental design method for optimization was used. Derringer method was used to determine optimal parameters for simultaneous optimization of two response variables, namely elastic modulus and ultimate stress. It can be concluded that the optimal conditions occur simultaneously at 50 K, strain rate 0.01, and chirality (5,5), in which the value of the elastic modulus is 156 GPa and the ultimate strain value is 13.7 GPa and simultaneous minimum value of elastic modulus and ultimate stress occur at 650 K, strain rate 0.0205, chirality (3,3), in which the value of elastic module is 94 GPa and the ultimate strain value is 6.44 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author.

Code availability

The LAMMPS package is free and open-source software.

References

  1. Kelly A (1985) Composites in context. Compos Sci Technol 23(3):171–199

    Article  MathSciNet  Google Scholar 

  2. Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65(3–4):491–516

    Article  Google Scholar 

  3. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39

    Article  Google Scholar 

  4. Komarneni S (1992) Nanocomposites. J Mater Chem 2(12):1219–1230

    Article  Google Scholar 

  5. Tsai PC, Jeng YR, Lee JT, Stachiv I, Sittner P (2017) Effects of carbon nanotube reinforcement and grain size refinement mechanical properties and wear behaviors of carbon nanotube/copper composites. Diam Relat Mater 74:197–204

    Article  Google Scholar 

  6. Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites-a review. Int Mater Rev 55(1):41–64

    Article  Google Scholar 

  7. Burkholder GL, Kwon YW, Pollak RD (2011) Effect of carbon nanotube reinforcement on fracture strength of composite adhesive joints. J Mater Sci 46(10):3370–3377

    Article  Google Scholar 

  8. Park YG, Min H, Kim H, Zhexembekova A, Lee CY, Park JU (2019) Three-dimensional, high-resolution printing of carbon nanotube/liquid metal composites with mechanical and electrical reinforcement. Nano Lett 19(8):4866–4872

    Article  Google Scholar 

  9. Carreño-Morelli E, Yang J, Couteau E, Hernadi K, Seo JW, Bonjour C, Schaller R (2004) Carbon nanotube/magnesium composites. Physica Status Solidi 201(8):R53–R55

    Article  Google Scholar 

  10. Ni X, Furtado C, Fritz NK, Kopp R, Camanho PP, Wardle BL (2020) Interlaminar to intralaminar mode I and II crack bifurcation due to aligned carbon nanotube reinforcement of aerospace-grade advanced composites. Compos Sci Technol 190:108014

    Article  Google Scholar 

  11. Li Q, Viereckl A, Rottmair CA, Singer RF (2009) Improved processing of carbon nanotube/magnesium alloy composites. Compos Sci Technol 69(7–8):1193–1199

    Article  Google Scholar 

  12. Uddin SM, Mahmud T, Wolf C, Glanz C, Kolaric I, Volkmer C, Fecht HJ (2010) Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Compos Sci Technol 70(16):2253–2257

    Article  Google Scholar 

  13. Silvestre N (2013) State-of-the-art review on carbon nanotube reinforced metal matrix composites. Int J Compos Mater 3(6):28–44

    Google Scholar 

  14. Kuzumaki T, Ujiie O, Ichinose H, Ito K (2000) Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite. Adv Eng Mater 2(7):416–418

    Article  Google Scholar 

  15. Tjong SC (2013) Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R Rep 74(10):281–350

    Article  Google Scholar 

  16. Esawi AM, Morsi K, Sayed A, Gawad AA, Borah P (2009) Fabrication and properties of dispersed carbon nanotube–aluminum composites. Mater Sci Eng A 508(1–2):167–173

    Article  Google Scholar 

  17. Liu ZY, Xiao BL, Wang WG, Ma ZY (2012) Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50(5):1843–1852

    Article  Google Scholar 

  18. Kim IY, Lee JH, Lee GS, Baik SH, Kim YJ, Lee YZ (2009) Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions. Wear 267(1–4):593–598

    Article  Google Scholar 

  19. Wu J, Zhang H, Zhang Y, Wang X (2012) Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering. Mater Des 41:344–348

    Article  Google Scholar 

  20. Chen B, Kondoh K, Imai H, Umeda J, Takahashi M (2016) Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions. Scripta Mater 113:158–162

    Article  Google Scholar 

  21. Izadi H, Gerlich AP (2012) Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon 50(12):4744–4749

    Article  Google Scholar 

  22. Liu ZY, Xiao BL, Wang WG, Ma ZY (2014) Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing. Carbon 69:264–274

    Article  Google Scholar 

  23. Bakshi SR, Agarwal A (2011) An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49(2):533–544

    Article  Google Scholar 

  24. Salama EI, Abbas A, Esawi AM (2017) Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites. Compos A Appl Sci Manuf 99:84–93

    Article  Google Scholar 

  25. Hassan MT, Esawi AM, Metwalli S (2014) Effect of carbon nanotube damage on the mechanical properties of aluminium–carbon nanotube composites. J Alloy Compd 607:215–222

    Article  Google Scholar 

  26. Park JG, Keum DH, Lee YH (2015) Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon 95:690–698

    Article  Google Scholar 

  27. Yan Y, Lei Y, Liu S (2018) Tensile responses of carbon nanotubes-reinforced copper nanocomposites: molecular dynamics simulation. Comput Mater Sci 151:273–277

    Article  Google Scholar 

  28. Motamedi M, Naghdi A, Jalali K (2010) Effect of temperature on properties of aluminum/single-walled carbon nanotube nanocomposite by molecular dynamics simulation. Proc IMechE Part C J Mech Eng Sci. https://doi.org/10.1177/0954406219878760

    Article  Google Scholar 

  29. Motamedi M (2020) A space structural mechanics model of silicene. Proc Inst Mech Eng Part N J Nanomat Nanoeng Nanosyst 23:977

    Google Scholar 

  30. Motamedi M, Eskandari M, Yeganeh M (2012) Effect of straight and wavy carbon nanotube on the reinforcement modulus in nonlinear elastic matrix nanocomposite. Mater Des 34:603–608

    Article  Google Scholar 

  31. Silvestre N, Faria B, Lopes JNC (2014) Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics. Compos Sci Technol 90:16–24

    Article  Google Scholar 

  32. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112(14):6472–6486

    Article  Google Scholar 

  33. Wei Y, Wu J, Yin H, Shi X, Yang R, Dresselhaus M (2012) The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene. Nat Mater 11(9):759–763

    Article  Google Scholar 

  34. Bashirvand S, Montazeri A (2016) New aspects on the metal reinforcement by carbon nanofillers: a molecular dynamics study. Mater Des 91:306–313

    Article  Google Scholar 

  35. Yishi S et al (2014) Computational structural modeling and mechanical behavior of carbon nanotube reinforced aluminum matrix composites. Mater Sci Eng A 614:273–283

    Article  Google Scholar 

  36. Choi BK, Yoon GH, Lee S (2015) Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading. Compos Part B. https://doi.org/10.1016/j.compositesb.2015.12.031

    Article  Google Scholar 

  37. Laha T et al (2009) Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos A App Sci Manuf 40(5):589–594

    Article  Google Scholar 

  38. Choi HJ, Shin JH, Bae DH (2012) The effect of milling conditions on microstructures and mechanical properties of AL/MWCNT composites. Compos A App Sci Manuf 43(7):1061–1072

    Article  Google Scholar 

  39. Deng CF et al (2007) Processing and properties of carbon nanotubes reinforced aluminum composites. Mater Sci Eng A 444(1–2):138–145

    Article  Google Scholar 

  40. Esawi A et al (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70:2237–2241

    Article  Google Scholar 

  41. Bayar S, Delale F, Liaw M (2014) Effect of temperature on mechanical properties of Nanoclay-reinforced polymeric nanocomposites. I: experimental results. J Aerosp Eng 27:491–504

    Article  Google Scholar 

  42. Singh A, Kumar D (2018) Effect of temperature on elastic properties of CNT-polyethylene nanocomposite and its interface using MD simulations. J Mol Model 24:178

    Article  Google Scholar 

  43. Jun H, Zhirong D, Chen S, Qinlong L (2017) Molecular dynamics study on the tensile properties of graphene/Cu nanocomposite. Int J Comput Mater Sci Eng 6(2):1750021

    Google Scholar 

  44. Moeini M et al (2020) Molecular dynamics simulations of the effect of temperature and strain rate on mechanical properties of graphene–epoxy nanocomposites. Mol Simul 46(6)

  45. Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimization using designed experiments. Wiley, New York

    MATH  Google Scholar 

  46. Mehrvar A, Basti A, Jamali A (2020) Inverse modelling of electrochemical machining process using a novel combination of soft computing methods. Proc IMechE Part C J Mech Eng Sci 234(17):3436–3446

    Article  Google Scholar 

  47. Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219

    Article  Google Scholar 

  48. Castillo ED, Montgomery DC, Mc Carville DR (1996) Modified desirability functions for multiple response optimizations. J Qual Technol 28(3):337–345

    Article  Google Scholar 

  49. Mehrvar A, Basti A, Jamali A (2017) Modelling and parameter optimization in electrochemical machining process: application of dual response surface-desirability approach. Lat Am Appl Res 47(4):157–162

    Google Scholar 

Download references

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and implementation of the research, to the analysis of the results, and to the writing of the manuscript.

Corresponding author

Correspondence to M. Motamedi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motamedi, M., Mehrvar, A. & Nikzad, M. Statistical modelling and optimization of AL/CNT composite using response surface-desirability approach. Comp. Part. Mech. 10, 143–153 (2023). https://doi.org/10.1007/s40571-022-00484-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00484-8

Keywords

Navigation