Skip to main content
Log in

A novel continuum–discrete multiscale coupling method for strain localization of lipid bio-membrane under tension

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A novel continuum–discrete multiscale coupling (CDMC) method is proposed for lipid bio-membrane to deal with its strain localization problems. This approach differs from classical continuum methods, in which the constitutive models are determined on the basis of macroscale phenomenological experiments. In this multiscale model, the moving least squares (MLS) approximation is used for linking the fully discrete coarse-grained particle model and the corresponding higher-order continuous solid model, and bridging the microscale and macroscale deformation fields. From the numerical point of view, this method can freely select the degree of freedom of a system. Based on the proposed CDMC method, a variationally consistent meshless computational scheme is constructed for simulating the strain localization of lipid bio-membrane sheets. The strain localization behaviors of lipid bio-membrane sheets under tension are simulated by the proposed CDMC method. The effectiveness and accuracy of this method are confirmed comparing with full particle simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Rinehart JS, Pearson J (1954) Behavior of metals under impulsive loads. American Society for Metals, Cleveland, Ohio

    Google Scholar 

  2. Thomas TY (1961) Plastic Flow and Fracture in Solids. Academic Press

    MATH  Google Scholar 

  3. Chung N, Embury J, Evensen J, Hoagland R, Sargent C (1977) Unstable shear failure in a 7075 aluminum alloy. Acta Metall Mater 25(4):377–381

    Article  Google Scholar 

  4. Rogers HC (1979) Adiabatic plastic deformation. Annu Rev Mater Sci 9(1):283–311

    Article  Google Scholar 

  5. Bai Y (1990) Adiabatic shear banding. Res Mech 31(2):133–203

    Google Scholar 

  6. Klepaczko JR, Nguyen HV, Nowacki WK (1999) Quasi-static and dynamic shearing of sheet metals. Eur J Mech A Solids 18(2):271–289

    Article  MATH  Google Scholar 

  7. Zhang Y, Liu G, Han X (2004) Analysis of strain localization for ductile materials with effect of void growth. Int J Mech Sci 46(7):1021–1034

    Article  MATH  Google Scholar 

  8. Asaro RJ, Rice JR (1977) Strain localization in ductile single crystals. J Mech Phys Solids 25(5):309–338

    Article  MATH  Google Scholar 

  9. Asaro RJ (1983) Micromechanics of crystals and polycrystals. Adv Appl Mech 23:1–115

    Article  Google Scholar 

  10. Armero F, Garikipati K (1996) An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. Int J Solids Struct 33(20–22):2863–2885

    Article  MathSciNet  MATH  Google Scholar 

  11. Becker R (1998) Effects of strain localization on surface roughening during sheet forming. Acta Mater 46(4):1385–1401

    Article  Google Scholar 

  12. Zhu C, Harrington T, Livescu V, Gray GT III, Vecchio KS (2016) Determination of geometrically necessary dislocations in large shear strain localization in aluminum. Acta Mater 118:383–394

    Article  Google Scholar 

  13. Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59(1):283–296

    Article  Google Scholar 

  14. Fu T, Peng X, Chen X, Weng S, Hu N, Li Q, Wang Z (2016) Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter. Sci Rep 6:35665

    Article  Google Scholar 

  15. Koning MD, Miller R, Bulatov VV, Abraham FF (2002) Modelling grain-boundary resistance in intergranular dislocation slip transmission. Phil Mag A 82(13):2511–2527

    Article  Google Scholar 

  16. Van Swygenhoven H, Derlet PM, Frøseth AG (2004) Stacking fault energies and slip in nanocrystalline metals. Nat Mater 3(6):399–403

    Article  Google Scholar 

  17. Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Phil Mag A 73(6):1529–1563

    Article  Google Scholar 

  18. Guo X, Liao JB, Wang XY (2012) Investigation of the thermo-mechanical properties of single-walled carbon nanotubes based on the temperature-related higher order Cauchy-Born rule. Comput Mater Sci 51(1):445–454

    Article  Google Scholar 

  19. Wang XY, Guo X (2012) Numerical simulation for finite deformation of single-walled carbon nanotubes at finite temperature using temperature-related higher order Cauchy-Born rule based quasi-continuum model. Comput Mater Sci 55:273–283

    Article  Google Scholar 

  20. Sun YZ, Liew KM (2008) The buckling of single-walled carbon nanotubes upon bending: the higher order gradient continuum and mesh-free method. Comput Method Appl Mech Eng 197(33–40):3001–3013

    Article  MATH  Google Scholar 

  21. Wang XY, Guo X (2013) Quasi-continuum model for the finite deformation of single-layer graphene sheets based on the temperature-related higher order Cauchy-Born rule. J Comput Theor Nanosci 10(1):154–164

    Article  Google Scholar 

  22. Wang XY, Wang JB, Guo X (2016) Finite deformation of single-walled carbon nanocones under axial compression using a temperature-related multiscale quasi-continuum model. Comput Mater Sci 114:244–253

    Article  Google Scholar 

  23. Wang XY, Guo X, Su Z (2014) A quasi-continuum model for human erythrocyte membrane based on the higher order Cauchy-Born rule. Comput Method Appl Mech Eng 268:284–298

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo X, Wang JB, Zhang HW (2006) Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy-Born rule. Int J Solids Struct 43(5):1276–1290

    Article  MATH  Google Scholar 

  25. Rokoš O, Beex LA, Zeman J, Peerlings RH (2016) A variational formulation of dissipative quasicontinuum methods. Int J Solids Struct 102:214–229

    Article  Google Scholar 

  26. Chen L, Berke PZ, Massart TJ, Beex LA, Magliulo M, Bordas SP (2021) A refinement indicator for adaptive quasicontinuum approaches for structural lattices. Int J Numer Methods Eng 122(10):2498–2527

    Article  MathSciNet  Google Scholar 

  27. Chen L, Beex LA, Berke PZ, Massart TJ, Bordas SP (2020) Generalized quasicontinuum modeling of metallic lattices with geometrical and material nonlinearity and variability. Comput Method Appl Mech Eng 366:112878

    Article  MathSciNet  MATH  Google Scholar 

  28. Gao H, Klein P (1998) Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J Mech Phys Solids 46(2):187–218

    Article  MATH  Google Scholar 

  29. Klein P, Gao H (1998) Crack nucleation and growth as strain localization in a virtual-bond continuum. Eng Fract Mech 61(1):21–48

    Article  Google Scholar 

  30. Mason TG, Bibette J (1996) Emulsification in viscoelastic media. Phys Rev Lett 77(16):3481

    Article  Google Scholar 

  31. Huang X, Li S, Huang Y, Wu S, Zhou X, Li S, Gan CL, Boey F, Mirkin CA, Zhang H (2011) Synthesis of hexagonal close-packed gold nanostructures. Nat Commun 2:292

    Article  Google Scholar 

  32. Wang S, Sato S, Kimura K (2003) Preparation of hexagonal-close-packed colloidal crystals of hydrophilic monodisperse gold nanoparticles in bulk aqueous solution. Chem Mater 15(12):2445–2448

    Article  Google Scholar 

  33. Steltenkamp S, Müller MM, Deserno M, Hennesthal C, Steinem C, Janshoff A (2006) Mechanical properties of pore-spanning lipid bilayers probed by atomic force microscopy. Biophys J 91(1):217–226

    Article  Google Scholar 

  34. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158

    Article  MathSciNet  MATH  Google Scholar 

  35. Goetz R, Lipowsky R (1998) Computer simulations of bilayer membranes: self-assembly and interfacial tension. J Chem Phys 108(17):7397–7409

    Article  Google Scholar 

  36. Marrink SJ, De Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108(2):750–760

    Article  Google Scholar 

  37. Lis LJ, McAlister D, Fuller N, Rand RP, Parsegian VA (1982) Interactions between neutral phospholipid bilayer membranes. Biophys J 37(3):657–665

    Article  Google Scholar 

  38. Hauseux P, Ambrosetti A, Bordas S, Tkatchenko A (2022) Colossal enhancement of atomic force response in van der Waals materials arising from many-body electronic correlations. Phys Rev Lett 128(10):106101

    Article  Google Scholar 

  39. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813

    Article  MathSciNet  MATH  Google Scholar 

  40. Kosec G, Slak J, Depolli M, Trobec R, Pereira K, Tomar S, Jacquemin T, Bordas S, Wahab MA (2019) Weak and strong from meshless methods for linear elastic problem under fretting contact conditions. Tribol Int 138:392–402

    Article  Google Scholar 

  41. Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T (2014) XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Comput Mech 53(1):45–57

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu B, Huang Y, Jiang H, Qu S, Hwang KC (2004) The atomic-scale finite element method. Comput Method Appl Mech Eng 193(17–20):1849–1864

    Article  MATH  Google Scholar 

  43. Damasceno DA, Mesquita E, Rajapakse RNKD (2017) Mechanical behavior of nano structures using atomic-scale finite element method (AFEM). Lat Am J Solids Struct 4(11):2046–2066

    Article  Google Scholar 

  44. Lee HL, Wang SW, Yang YC, Chang WJ (2017) Effect of porosity on the mechanical properties of a nanoporous graphene membrane using the atomic-scale finite element method. Acta Mech 228:2623–2629

    Article  Google Scholar 

  45. Yang SW, Budarapu PR, Mahapatra DR, Bordas SPA, Zi G, Rabczuk T (2015) A meshless adaptive multiscale method for fracture. Comput Mater Sci 96:382–395

    Article  Google Scholar 

  46. Kaennakham S, Chuathong N (2019) An automatic node-adaptive scheme applied with a RBF-collocation meshless method. Appl Math Comput 348:102–125

    MathSciNet  MATH  Google Scholar 

  47. Ullah Z, Augarde CE (2013) Finite deformation elasto-plastic modelling using an adaptive meshless method. Comput Struct 118:39–52

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (12172158 and 11602101) and the Shandong Provincial Natural Science Foundation for Outstanding Youth, China (ZR2018JL004) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Qi, H., Bi, J. et al. A novel continuum–discrete multiscale coupling method for strain localization of lipid bio-membrane under tension. Comp. Part. Mech. 10, 221–240 (2023). https://doi.org/10.1007/s40571-022-00483-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00483-9

Keywords

Navigation