Skip to main content
Log in

A dissipative particle dynamics simulation of a pair of red blood cells in flow through a symmetric and an asymmetric bifurcated microchannel

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Particle-based methods such as smoothed particle hydrodynamics and dissipative particle dynamics are apt for simulating particle-like suspensions in blood. The blood flow through the microvasculature and its dynamics is strongly influenced by the dominant suspensions, and the red blood cells (RBCs) in plasma. The deformation dynamics of RBCs flowing through capillaries is of practical importance to be able to exploit the understanding for device development. In the present study, dynamics of a pair of RBCs flowing through a symmetric and an asymmetric bifurcating microfluidic channel are simulated. The finite-sized dissipative particle dynamics framework in conjunction with a discrete model for the RBCs is employed to model the system. When the RBCs flow through a bifurcating channel, the cell shape, deformability and flow rate ratios through the daughter branches are investigated. The deformed shape of RBC at the bifurcating channel’s tip was found to compare well with experimental observations. It was found that for flow through an asymmetric bifurcating channel, RBC near the separating streamline passed through the low flow rate branch, although lateral migration was observed. The trade-off effects and following effects of the two RBCs were particularly noticed in symmetric bifurcation. In the case of RBCs moving as a pair, it was found that the cell–cell interactions influence the path selection of RBCs as it approaches the tip of bifurcation. Specifically, RBC motion towards the low flow rate branch was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fung YC (1973) Stochastic flow in capillary blood vessels. Microvasc Res 5(1):34. https://doi.org/10.1016/S0026-2862(73)80005-6

    Article  Google Scholar 

  2. Yoganathan A, Chandran K, Rittgers S (2012) Rheology of blood and vascular mechanics. Taylor and Francis Group, London. https://doi.org/10.1201/b11709

    Book  Google Scholar 

  3. Pries AR, Ley K, Claassen M, Gaehtgens P (1989) Red cell distribution at microvascular bifurcations. Microvasc Res 38(1):81

    Article  Google Scholar 

  4. Enden G (1994) A numerical study of plasma skimming in small vascular bifurcations. Trans ASME J Biomech Eng 116(1):79

    Article  Google Scholar 

  5. El-Kareh AW, Secomb TW (2000) A model for red blood cell motion in bifurcating microvessels. Int J Multiph Flow 26(9):1545

    Article  MATH  Google Scholar 

  6. Pries AR, Secomb TW, Gaehtgens P, Gross JF (1990) Blood flow in microvascular networks. In: Circulation research, pp 3–36

  7. Gijsen FJH, van de Vosse FN, Janssen JD (1999) The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J Biomech 32(6):601

    Article  Google Scholar 

  8. Inoue Y, Takagi S, Matsumoto Y (2006) A mesoscopic simulation study of distributions of droplets in a bifurcating channel. Comput Fluids 35(8–9):971. https://doi.org/10.1016/j.compfluid.2005.07.018

    Article  MATH  Google Scholar 

  9. Sun C, Munn LL (2008) Lattice-Boltzmann simulation of blood flow in digitized vessel networks. Comput Math Appl 55(7):1594

    Article  MathSciNet  MATH  Google Scholar 

  10. Jafari A, Mousavi SM, Kolari P (2008) Numerical investigation of blood flow. Part I: in microvessel bifurcations. Commun Nonlinear Sci Numer Simul 13(8):1615

    Article  MathSciNet  MATH  Google Scholar 

  11. Barber JO, Alberding JP, Restrepo JM, Secomb TW (2008) Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations. Ann Biomed Eng 36(10):1690. https://doi.org/10.1007/s10439-008-9546-4

    Article  Google Scholar 

  12. Li X, Popel AS, Karniadakis GE (2012) Bloodplasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Phys Biol 9(2):026010. https://doi.org/10.1088/1478-3975/9/2/026010

    Article  Google Scholar 

  13. Hyakutake T, Nagai S (2015) Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations. Microvasc Res 97:115. https://doi.org/10.1016/j.mvr.2014.10.001

    Article  Google Scholar 

  14. Xiong W, Zhang J (2012) Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects. Biomech Model Mechanobiol 11(3–4):575. https://doi.org/10.1007/s10237-011-0334-y

    Article  Google Scholar 

  15. Chesnutt JK, Marshall JS (2009) Effect of particle collisions and aggregation on red blood cell passage through a bifurcation. Microvasc Res 78(3):301. https://doi.org/10.1016/j.mvr.2009.09.003

    Article  Google Scholar 

  16. Barber JO, Restrepo JM, Secomb TW (2011) Simulated red blood cell motion in microvessel bifurcations: effects of cell–cell interactions on cell partitioning. Cardiovasc Eng Technol 2(4):349. https://doi.org/10.1007/s13239-011-0064-4

    Article  Google Scholar 

  17. Yin X, Thomas T, Zhang J (2013) Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation. Microvasc Res 89:47. https://doi.org/10.1016/j.mvr.2013.05.002

    Article  Google Scholar 

  18. Wang T, Rongin U, Xing Z (2016) A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels. Sci Rep 6(1):1. https://doi.org/10.1038/srep20262

    Article  Google Scholar 

  19. Tripathi S, Varun Kumar YV, Prabhakar A, Joshi SS, Agrawal A (2015) Passive blood plasma separation at the microscale: a review of design principles and microdevices. J Micromech Microeng 25(8):083001. https://doi.org/10.1088/0960-1317/25/8/083001

    Article  Google Scholar 

  20. Enden G, Popel AS (1992) A numerical study of the shape of the surface separating flow into branches in microvascular bifurcations. J Biomech Eng 114(3):398. https://doi.org/10.1115/1.2891401

    Article  Google Scholar 

  21. Peng Z, Chen YL, Lu H, Pan Z, Chang HC (2015) Mesoscale simulations of two model systems in biophysics: from red blood cells to DNAs. Comput Part Mech 2(4):339. https://doi.org/10.1007/s40571-015-0057-4

    Article  Google Scholar 

  22. Anand DV, Vedantam S, Patnaik BSV (2016) Dissipative particle dynamics simulation of shear flow in a microchannel with a deformable membrane. Microfluid Nanofluid 20(12):1–13

    Article  Google Scholar 

  23. Vijay Anand D, Patnaik BSV, Vedantam S (2017) A dissipative particle dynamics study of a flexible filament in confined shear flow. Soft Matter 13(7):1472

    Article  Google Scholar 

  24. Hassanzadeh A, Pourmahmoud N, Dadvand A (2017) Numerical simulation of motion and deformation of healthy and sick red blood cell through a constricted vessel using hybrid lattice Boltzmann-immersed boundary method. Comput Methods Biomech Biomed Eng 20(7):737. https://doi.org/10.1080/10255842.2017.1298746

    Article  Google Scholar 

  25. Ju M, Ye SS, Namgung B, Cho S, Low HT, Leo HL, Kim S (2015) A review of numerical methods for red blood cell flow simulation. Comput Methods Biomech Biomed Eng 18(2):130

    Article  Google Scholar 

  26. Oulaid O, Saad AKW, Aires PS, Zhang J (2016) Effects of shear rate and suspending viscosity on deformation and frequency of red blood cells tank-treading in shear flows. Comput Methods Biomech Biomed Eng 19(6):648. https://doi.org/10.1080/10255842.2015.1055734

    Article  Google Scholar 

  27. Pan W, Caswell B, Karniadakis GE (2010) A low-dimensional model for the red blood cell. Soft Matter 6(18):4366. https://doi.org/10.1039/c0sm00183j

    Article  Google Scholar 

  28. Balachandran Nair AN, Pirker S, Umundum T, Saeedipour M (2020) A reduced-order model for deformable particles with application in bio-microfluidics. Comput Part Mech 7(3):593. https://doi.org/10.1007/s40571-019-00283-8

    Article  Google Scholar 

  29. Ye T, Phan-Thien N, Lim CT (2016) Particle-based simulations of red blood cells. A review. J Biomech 49(11):2255. https://doi.org/10.1016/j.jbiomech.2015.11.050

    Article  Google Scholar 

  30. Yazdani A, Deng M, Caswell B, Karniadakis GE (2016) Flow in complex domains simulated by dissipative particle dynamics driven by geometry-specific body-forces. J Comput Phys 305:906. https://doi.org/10.1016/j.jcp.2015.11.001

    Article  MathSciNet  MATH  Google Scholar 

  31. Alizadehrad D, Fedosov DA (2018) Static and dynamic properties of smoothed dissipative particle dynamics. J Comput Phys 356:303. https://doi.org/10.1016/j.jcp.2017.12.009

    Article  MathSciNet  MATH  Google Scholar 

  32. Gao C, Zhang P, Marom G, Deng Y, Bluestein D (2017) Reducing the effects of compressibility in DPD-based blood flow simulations through severe stenotic microchannels. J Comput Phys 335:812. https://doi.org/10.1016/j.jcp.2017.01.062

  33. Ghorbani N, Pishevar A (2018) A mesoscopic simulation of static and dynamic wetting using many-body dissipative particle dynamics. Comput Part Mech 5(1):113. https://doi.org/10.1007/s40571-017-0157-4

    Article  Google Scholar 

  34. Ranjith SK, Patnaik BSV, Vedantam S (2013) No-slip boundary condition in finite-size dissipative particle dynamics. J Comput Phys 232(1):174. https://doi.org/10.1016/j.jcp.2012.07.046

    Article  MathSciNet  Google Scholar 

  35. Fan X, Phan-Thien N, Chen S, Wu X, Ng TY (2006) Simulating flow of DNA suspension using dissipative particle dynamics. Phys Fluids 18(6):063102. https://doi.org/10.1063/1.2206595

    Article  MATH  Google Scholar 

  36. Pan W, Pivkin IV, Karniadakis GE (2008) Single-particle hydrodynamics in DPD: a new formulation. EPL 84(1):10012

    Article  MathSciNet  Google Scholar 

  37. Hoque SZ, Anand DV, Patnaik BSV (2018) The dynamics of a healthy and infected red blood cell in flow through constricted channels: a DPD simulation. Int J Numer Methods Biomed Eng 34(9):3105. https://doi.org/10.1002/cnm.3105

    Article  Google Scholar 

  38. Willemsen SM, Hoefsloot HCJ, Iedema PD (2000) No-slip boundary condition in dissipative particle dynamics. Int J Mod Phys C 11(05):881. https://doi.org/10.1142/S0129183100000778

    Article  Google Scholar 

  39. Pivkin IV, Karniadakis GE (2005) A new method to impose no-slip boundary conditions in dissipative particle dynamics. J Comput Phys 207(1):114. https://doi.org/10.1016/j.jcp.2005.01.006

    Article  MathSciNet  MATH  Google Scholar 

  40. Fedosov DA, Pivkin IV, Karniadakis GE (2008) Velocity limit in DPD simulations of wall-bounded flows. J Comput Phys 227(4):2540

    Article  MathSciNet  MATH  Google Scholar 

  41. Pivkin IV, Karniadakis GE (2006) Controlling density fluctuations in wall-bounded dissipative particle dynamics systems. Phys Rev Lett 96:206001. https://doi.org/10.1103/PhysRevLett.96.206001

    Article  Google Scholar 

  42. Abu-Nada E, Kumar A, Asako Y, Faghri M (2012) Dissipative particle dynamics for complex geometries using non-orthogonal transformation. Int J Numer Methods Fluids 68(3):324. https://doi.org/10.1002/fld.2508

    Article  MathSciNet  MATH  Google Scholar 

  43. Kasiteropoulou D, Karakasidis T, Liakopoulos A (2013) Mesoscopic simulation of fluid flow in periodically grooved microchannels. Comput Fluids 74:91

    Article  MATH  Google Scholar 

  44. Zhang D, Shangguan Q, Wang Y (2018) An easy-to-use boundary condition in dissipative particle dynamics system. Comput Fluids 166:117

    Article  MathSciNet  MATH  Google Scholar 

  45. Groot R, Warren P (1997) Dissipative particle dynamics: bridging the gap between atomisticand mesoscopic simulation. J Chem Phys 107(11):4423

    Article  Google Scholar 

  46. Dzwinel W, Yuen DA (2000) Matching macroscopic properties of binary fluids to the interactions of dissipative particle dynamics. Int J Mod Phys C 11(01):1. https://doi.org/10.1142/S012918310000002X

    Article  Google Scholar 

  47. Trofimov S (2003) Thermodynamic consistency in dissipative particle dynamics. Technische Universiteit Eindhoven, Eindhoven. https://doi.org/10.6100/IR570813

    Book  Google Scholar 

  48. Ranjith SK, Vedantam S, Patnaik BSV (2015) Hydrodynamics of flow through microchannels with hydrophobic strips. Microfluid Nanofluid 19(3):547

    Article  Google Scholar 

  49. Pries AR, Secomb TW (2011) Blood flow in microvascular networks. Wiley, Hoboken. https://doi.org/10.1002/cphy.cp020401

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. V. Patnaik.

Ethics declarations

Conflict of interest

Authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoque, S.Z., Anand, D.V. & Patnaik, B.S.V. A dissipative particle dynamics simulation of a pair of red blood cells in flow through a symmetric and an asymmetric bifurcated microchannel. Comp. Part. Mech. 9, 1219–1231 (2022). https://doi.org/10.1007/s40571-021-00453-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00453-7

Keywords

Navigation