Skip to main content
Log in

A DEM approach for simulating flexible beam elements with the Project Chrono core module in DualSPHysics

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This work presents a novel approach for simulating elastic beam elements in DualSPHysics leveraging functions made available by the coupling with the Project Chrono library. Such numerical frameworks, belonging to the Meshfree Particle Methods family, stand out for several features, like complex multiphase phenomena, moving boundaries, and high deformations which are handled with relative ease and reasonable numerical stability and reliability. Based on a co-rotating rigid element structure and lumped elasticity, a cogent mathematical formulation, relying on the Euler–Bernoulli beam theory for the structural discretization, is presented and applied to simulating two-dimensional flexible beams with the discrete elements method (DEM) formulation. Three test cases are presented to validate the smoothed particle hydrodynamics-based (SPH) structure model in both accuracy and stability, starting from an equilibrium test, to the dynamic response, and closing with a fluid–structure interaction simulation. This work proves that the developed theory can be used within a Lagrangian framework, using the features provided by a DEM solver, overtaking the initial limitations, and hence applying the results of static theories to complex dynamic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shadloo MS, Oger G, Le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput Fluids 136:11–34. https://doi.org/10.1016/j.compfluid.2016.05.029

    Article  MathSciNet  MATH  Google Scholar 

  2. Girfoglio M, Quaini A, Rozza G (2021) Fluid-structure interaction simulations with a LES filtering approach in solids4foam. Commun Appl Ind Math 12(1):13–28. https://doi.org/10.2478/caim-2021-0002

    Article  MathSciNet  MATH  Google Scholar 

  3. Hou G, Wang J, Layton A (2012) Numerical methods for fluid-structure interaction—a review. Commun Comput Phys 12(2):337–377. https://doi.org/10.4208/cicp.291210.290411s

    Article  MathSciNet  MATH  Google Scholar 

  4. Violeau D, Rogers BD (2016) Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J Hydraul Res 54(1):1–26. https://doi.org/10.1080/00221686.2015.1119209

    Article  Google Scholar 

  5. Luo M, Khayyer A, Lin P (2021) Particle methods in ocean and coastal engineering. Appl Ocean Res 114:102734. https://doi.org/10.1016/j.apor.2021.102734

    Article  Google Scholar 

  6. Gotoh H, Khayyer A (2018) On the state-of-the-art of particle methods for coastal and ocean engineering. Coastal Eng J 60(1):79–103. https://doi.org/10.1080/21664250.2018.1436243

    Article  Google Scholar 

  7. Manenti S, Wang D, Domínguez JM, Li S, Amicarelli A, Albano R (2019) SPH modeling of water-related natural hazards. Water 11:1875. https://doi.org/10.3390/w11091875

    Article  Google Scholar 

  8. Khayyer A, Gotoh H, Falahaty H, Shimizu Y (2018) An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Comput Phys Commun 232:139–164. https://doi.org/10.1016/j.cpc.2018.05.012

    Article  MathSciNet  Google Scholar 

  9. Sun PN, Le Touzé D, Zhang A-M (2019) Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR. Eng Anal Bound Elem 104:240–258. https://doi.org/10.1016/j.enganabound.2019.03.033

    Article  MathSciNet  MATH  Google Scholar 

  10. Sun PN, Le Touzé D, Oger G, Zhang AM (2021) An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Eng 221:108552. https://doi.org/10.1016/j.oceaneng.2020.108552

    Article  Google Scholar 

  11. O’Connor J, Rogers BD (2021) A fluid-structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. J Fluids Struct 104:103312. https://doi.org/10.1016/j.jfluidstructs.2021.103312

  12. Khayyer A, Shimizu Y, Gotoh H, Nagashima K (2021) A coupled incompressible SPH-hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures. Appl Math Model 94:242–271. https://doi.org/10.1016/j.apm.2021.01.011

    Article  MathSciNet  MATH  Google Scholar 

  13. Li Z, Leduc J, Nunez-Ramirez J, Combescure A, Marongiu JC (2015) A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion. Comput Mech 55:697–718. https://doi.org/10.1007/s00466-015-1131-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Fourey G, Hermange C, Le Touzé D, Oger G (2017) An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods. Comput Phys Commun 217:66–81. https://doi.org/10.1016/j.cpc.2017.04.005

    Article  MathSciNet  MATH  Google Scholar 

  15. Canelas RB, Brito M, Feal OG, Domínguez JM, Crespo AJC (2018) Extending dualsphysics with a differential variational inequality: modeling fluid-mechanism interaction. Appl Ocean Res 76:88–97. https://doi.org/10.1016/j.apor.2018.04.015

    Article  Google Scholar 

  16. Amicarelli A, Manenti S, Albano R, Agate G, Paggi M, Longoni L, Mirauda D, Ziane L, Viccione G, Todeschini S, Sole A, Baldini LM, Brambilla D, Papini M, Khellaf MC, Tagliafierro B, Sarno L, Pirovano G (2020) Sphera v.9.0.0: a computational fluid dynamics research code, based on the smoothed particle hydrodynamics mesh-less method. Comput Phys Commun 250:107157. https://doi.org/10.1016/j.cpc.2020.107157

    Article  Google Scholar 

  17. Asai M, Li Y, Chandra B, Takase S (2021) Fluid-rigid-body interaction simulations and validations using a coupled stabilized ISPH-dem incorporated with the energy-tracking impulse method for multiple-body contacts. Comput Methods Appl Mech Eng 377:113681. https://doi.org/10.1016/j.cma.2021.113681

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu K, Yang D, Wright N (2016) A coupled SPH-dem model for fluid-structure interaction problems with free-surface flow and structural failure. Comput Struct 177:141–161. https://doi.org/10.1016/j.compstruc.2016.08.012

    Article  Google Scholar 

  19. Xie F, Zhao W, Wan D (2021) Mps-dem coupling method for interaction between fluid and thin elastic structures. Ocean Eng 236:109449449. https://doi.org/10.1016/j.oceaneng.2021.109449

    Article  Google Scholar 

  20. Sun Y, Xi G, Sun Z (2019) A fully Lagrangian method for fluid-structure interaction problems with deformable floating structure. J Fluids Struct 90:379–395. https://doi.org/10.1016/j.jfluidstructs.2019.07.005

    Article  Google Scholar 

  21. Fleissner F, Gaugele T, Eberhard P (2007) Applications of the discrete element method in mechanical engineering. Multibody Syst Dyn. https://doi.org/10.1007/s11044-007-9066-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Domínguez JM, Fourtakas G, Altomare C, Canelas R, Tafuni A, Feal OG, Martínez-Estévez I, Mokos A, Vacondio R, Crespo A, Rogers B, Stansby PK, Gómez-Gesteira M (2021) DualSPHysics: from fluid dynamics to multiphysics problems. Comput Part Mech. https://doi.org/10.1007/s40571-021-00404-2

    Article  Google Scholar 

  23. Altomare C, Tagliafierro B, Dominguez JM, Suzuki T, Viccione G (2018) Improved relaxation zone method in SPH-based model for coastal engineering applications. Appl Ocean Res 81:15–33. https://doi.org/10.1016/j.apor.2018.09.013

    Article  Google Scholar 

  24. Verbrugghe T, Domínguez JM, Altomare C, Tafuni A, Vacondio R, Troch P, Kortenhaus A (2019) Non-linear wave generation and absorption using open boundaries within DualSPHysics. Comput Phys Commun 240:46–59. https://doi.org/10.1016/j.cpc.2019.02.003

    Article  Google Scholar 

  25. Domínguez JM, Crespo AJC, Hall M, Altomare C, Wu M, Stratigaki V, Troch P, Cappietti L, Gómez-Gesteira M (2019) SPH simulation of floating structures with moorings. Coastal Eng 153:103560. https://doi.org/10.1016/j.coastaleng.2019.103560

    Article  Google Scholar 

  26. Canelas RB, Domínguez JM, Crespo AJC, Gómez-Gesteira M, Ferreira RML (2017) Resolved simulation of a granular-fluid flow with a coupled SPH-DCDEM model. J Hydraul Eng 143(9):06017012. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001331

    Article  Google Scholar 

  27. Tasora A, Serban R, Mazhar H, Pazouki A, Melanz D, Fleischmann J, Taylor M, Sugiyama H, Negrut D (2016) Chrono: an open source multi-physics dynamics engine. In: Kozubek T, Blaheta R, Šístek J, Rozložník M, Čermák M (eds) High performance computing in science and engineering. Springer International Publishing, Cham, pp 19–49. https://doi.org/10.1007/978-3-319-40361-8_2

    Chapter  Google Scholar 

  28. Ruffini G, Briganti R, De Girolamo P, Stolle J, Ghiassi B, Castellino M (2021) Numerical modelling of flow-debris interaction during extreme hydrodynamic events with DualSPHysics-CHRONO. Appl Sci. https://doi.org/10.3390/app11083618

    Article  Google Scholar 

  29. Brito M, Canelas RB, García-Feal O, Domínguez JM, Crespo AJC, Ferreira RML, Neves MG, Teixeira L (2020) A numerical tool for modelling oscillating wave surge converter with nonlinear mechanical constraints. Renewable Energy 146:2024–2043. https://doi.org/10.1016/j.renene.2019.08.034

    Article  Google Scholar 

  30. Ropero-Giralda P, Crespo AJC, Tagliafierro B, Altomare C, Domínguez JM, Gómez-Gesteira M, Viccione G (2020) Efficiency and survivability analysis of a point-absorber wave energy converter using dualsphysics. Renewable Energy 162:1763–1776. https://doi.org/10.1016/j.renene.2020.10.012

    Article  Google Scholar 

  31. Tagliafierro B, Montuori R, Vayas I, Ropero-Giralda P, Crespo A, Domìnguez J, Altomare C, Viccione G, Gòmez-Gesteira M (2020) A new open-source solver for modelling fluid-structure interaction: case study of a point-absorber wave energy converter with a power take-off unit. In: Proceedings of the 11th international conference on structural dynamics, Athens, Greece. https://doi.org/10.47964/1120.9052.21578

  32. Ropero-Giralda P, Crespo AJC, Coe RG, Tagliafierro B, Domínguez JM, Bacelli G, Gómez-Gesteira M (2021) Modelling a heaving point-absorber with a closed-loop control system using the dualsphysics code. Energies. https://doi.org/10.3390/en14030760

    Article  Google Scholar 

  33. Quartier N, Ropero-Giralda P, Domínguez JM, Stratigaki V, Troch P (2021) Influence of the drag force on the average absorbed power of heaving wave energy converters using smoothed particle hydrodynamics. Water. https://doi.org/10.3390/w13030384

    Article  Google Scholar 

  34. Quartier N, Crespo AJC, Domínguez JM, Stratigaki V, Troch P (2021) Efficient response of an onshore oscillating water column wave energy converter using a one-phase SPH model coupled with a multiphysics library. Appl Ocean Res 115:102856. https://doi.org/10.1016/j.apor.2021.102856

    Article  Google Scholar 

  35. Capasso S, Tagliafierro B, Martínez-Estévez I, Domínguez JM, El Rahi J, Stratigaki V, Crespo AJC, Montuori R, Troch P, Gómez-Gesteira M, Viccione G (2021) On the development of a novel approach for simulating elastic beams in DualSPHysics with the use of the project chrono library. In: Proceedings of the 8th international conference on computational methods in structural dynamics and earthquake engineering, Athens, Greece 28–30 June 2021

  36. Landau LD, Lifšic EM (1970) Theory of easticity, vol 7. Pergamon Press, Oxford

    Google Scholar 

  37. Violeau D (2012) Fluid mechanics and the SPH method: theory and applications. https://doi.org/10.1093/acprof:oso/9780199655526.001.0001

  38. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics. World Scientific, Singapore. https://doi.org/10.1142/5340

  39. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree. Adv Comput Math 4(1):389–396. https://doi.org/10.1007/BF02123482

    Article  MathSciNet  MATH  Google Scholar 

  40. Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180(6):861–872. https://doi.org/10.1016/j.cpc.2008.12.004

    Article  MathSciNet  MATH  Google Scholar 

  41. Fourtakas G, Dominguez JM, Vacondio R, Rogers BD (2019) Local uniform stencil (lust) boundary condition for arbitrary 3-d boundaries in parallel smoothed particle hydrodynamics (sph) models. Comput Fluids 190:346–361. https://doi.org/10.1016/j.compfluid.2019.06.009

    Article  MathSciNet  MATH  Google Scholar 

  42. Monaghan JJ, Cas RAF, Kos AM, Hallworth M (1999) Gravity currents descending a ramp in a stratified tank. J Fluid Mech 379:39–69. https://doi.org/10.1017/S0022112098003280

    Article  MATH  Google Scholar 

  43. Crespo AJC, Gómez–Gesteira M, Dalrymple RA (2007) Boundary conditions generated by dynamic particles in SPH methods. Comput Mater Continua 5(3):173–184. https://doi.org/10.3970/cmc.2007.005.173

  44. Zhang F, Crespo A, Altomare C, Dominguez J, Marzeddu A, Shang S, Gomez-Gesteira M (2018) DualSPHysics: a numerical tool to simulate real breakwaters. J Hydrodyn 30(1):95–105. https://doi.org/10.1007/s42241-018-0010-0

    Article  Google Scholar 

  45. González-Cao J, Altomare C, Crespo AJC, Domínguez JM, Gómez-Gesteira M, Kisacik D (2019) On the accuracy of dualsphysics to assess violent collisions with coastal structures. Comput Fluids 179:604–612. https://doi.org/10.1016/j.compfluid.2018.11.021

    Article  MathSciNet  MATH  Google Scholar 

  46. English A, Domínguez JM, Vacondio R, Crespo AJC, Stansby PK, Lind SJ, Chiapponi L, Gómez-Gesteira M (2021) Modified dynamic boundary conditions (mDBC) for general purpose smoothed particle hydrodynamics (SPH): application to tank sloshing, dam break and fish pass problems. Comput Part Mech. https://doi.org/10.1007/s40571-021-00403-3

    Article  Google Scholar 

  47. Liu MB, Liu GR (2006) Restoring particle consistency in smoothed particle hydrodynamics. Appl Numer Math 56(1):19–36. https://doi.org/10.1016/j.apnum.2005.02.012

    Article  MathSciNet  MATH  Google Scholar 

  48. Capasso S, Tagliafierro B, Güzel H, Yilmaz A, Dal K, Kocaman S, Viccione G, Evangelista S (2021) A numerical validation of 3D experimental dam-break wave interaction with a sharp obstacle using DualSPHysics. Water. https://doi.org/10.3390/w13152133

    Article  Google Scholar 

  49. Monaghan JJ, Kos A, Issa N (2003) Fluid motion generated by impact. J Waterway Port Coastal Ocean Eng 129(6):250–259. https://doi.org/10.1061/(ASCE)0733-950X(2003)129:6(250)

    Article  Google Scholar 

  50. Project Chrono Development Team. Chrono: An Open Source Framework for the Physics-Based Simulation of Dynamic Systems. https://github.com/projectchrono/chrono. Accessed 07 May 2020

  51. Sunday C, Murdoch N, Tardivel S, Schwartz SR, Michel P (2020) Validating N-body code Chrono for granular DEM simulations in reduced-gravity environments. Mon Not R Astron Soc 498(1):1062–1079. https://doi.org/10.1093/mnras/staa2454

    Article  Google Scholar 

  52. Bauchau OA, Craig JI (2009) Euler–Bernoulli beam theory. Springer Netherlands, Dordrecht, pp 173–221. ISBN 978-90-481-2516-6. https://doi.org/10.1007/978-90-481-2516-6_5

  53. Heng P, Alhasawi A, Battini JM, Hjiaj M (2019) Co-rotating rigid beam with generalized plastic hinges for the nonlinear dynamic analysis of planar framed structures subjected to impact loading. Finite Elem Anal Des 157:38–49. https://doi.org/10.1016/j.finel.2018.11.003

    Article  MathSciNet  Google Scholar 

  54. Liao K, Hu C, Sueyoshi M (2015) Free surface flow impacting on an elastic structure: experiment versus numerical simulation. Appl Ocean Res 50:192–208. https://doi.org/10.1016/j.apor.2015.02.002

    Article  Google Scholar 

  55. Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid–structure interaction by SPH. Comput Struct 85(11–14), 879–890. https://doi.org/10.1016/j.compstruc.2007.01.002

  56. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159(2):290–311. https://doi.org/10.1006/jcph.2000.6439

Download references

Acknowledgements

This work was supported by the project SURVIWEC PID2020-113245RB-I00 financed by MCIN/AEI/10.13039/501100011033 and by the project ED431C 2021/44 “Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas” financed by Xunta de Galicia, Consellería de Cultura, Educación e Universidade. B. Tagliafierro acknowledges funding from Italian Ministry for Education, University and Research (MIUR) as part of the program “Dottorati Innovativi a caratterizzazione industriale” (ID DOT 1328490-3). I. Martínez-Estévez acknowledges funding from Xunta de Galicia under “Programa de axudas á etapa predoutoral da Consellería de Cultura, Educación e Universidades da Xunta de Galicia” (ED481A-2021/337). J.M. Domínguez acknowledges funding from Spanish government under the program “Juan de la Cierva-incorporación 2017” (IJCI-2017-32592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Capasso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capasso, S., Tagliafierro, B., Martínez-Estévez, I. et al. A DEM approach for simulating flexible beam elements with the Project Chrono core module in DualSPHysics. Comp. Part. Mech. 9, 969–985 (2022). https://doi.org/10.1007/s40571-021-00451-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00451-9

Keywords

Navigation