Skip to main content
Log in

Meshfree numerical procedure of Biot’s consolidation: a coupled smoothed particle hydrodynamics and peridynamics model

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A meshfree-based coupling of smoothed particle hydrodynamics (SPH) and peridynamics (PD) is developed to study the interaction between fluid flow and mechanical deformation in a poroelastic medium. The peridynamic method is employed to analyze fluid flow through pore spaces whereas the SPH method evaluates velocity and stresses of the solid skeleton. The paper presents a mathematical framework of the procedure of coupling between SPH and PD methods. The change of reservoir porosity resulting from the change in pore pressure and mechanical deformation of the solid is also incorporated in this coupling algorithm. Finally, the versatility and efficiency of the proposed numerical framework are demonstrated through two numerical benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abousleiman Y, Cheng AD, Cui L, Detournay E, Roegiers JC (1996) Mandel’s problem revisited. Geotechnique 46(2):187–195

  2. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  Google Scholar 

  3. Biot MA (1956) General solutions of the equations of elasticity and consolidation for a porous material. J Appl Mech 23(1):91–96

    Article  MathSciNet  Google Scholar 

  4. Bobaru F, Foster JT, Geubelle PH, Silling SA (2016) Handbook of peridynamic modeling. CRC Press, USA

    Book  Google Scholar 

  5. Coussy O (2004) Poromechanics. Wiley, USA

    MATH  Google Scholar 

  6. Deb D, Pramanik R (2013) Failure process of brittle rock using smoothed particle hydrodynamics. J Eng Mech 139(11):1551–1565

    Article  Google Scholar 

  7. Douillet-Grellier T, Pramanik R, Pan K, Albaiz A, Jones BD, Williams JR (2017) Development of stress boundary conditions in smoothed particle hydrodynamics (sph) for the modeling of solids deformation. Comput Part Mech 4(4):451–471

    Article  Google Scholar 

  8. Fredrick JT, Deitrick GL, Arguello JG, DeRouffignac EP (1998) Reservoir compaction, surface subsidence, and casing damage: a geomechanics approach to mitigation and reservoir management In: SPE/ISRM Rock Mechanics in Petroleum Engineering, Society of Petroleum Engineers. Trondheim, Norway, July 1998. https://doi.org/10.2118/47284-MS

  9. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Notices R Astron Soc 181(3):375–389

    Article  Google Scholar 

  10. Gray J, Monaghan J, Swift R (2001) Sph elastic dynamics. Computer Methods Appl Mech Eng 190(49–50):6641–6662

    Article  Google Scholar 

  11. Gutierrez MS, Lewis RW (2002) Coupling of fluid flow and deformation in underground formations. J Eng Mech 128(7):779–787

    Article  Google Scholar 

  12. Katiyar A, Foster JT, Ouchi H, Sharma MM (2014) A peridynamic formulation of pressure driven convective fluid transport in porous media. J Comput Phys 261:209–229

    Article  MathSciNet  Google Scholar 

  13. Khayyer A, Gotoh H, Shimizu Y, Gotoh K, Falahaty H, Shao S (2018) Development of a projection-based sph method for numerical wave flume with porous media of variable porosity. Coast Eng 140:1–22

    Article  Google Scholar 

  14. Lewis R, Schrefler B (1982) A finite element simulation of the subsidence of gas reservoirs undergoing a water drive. Finite Elem Fluids 4:179–199

    Google Scholar 

  15. Lewis R, Sukirman Y (1993) Finite element modelling of three-phase flow in deforming saturated oil reservoirs. Int J Numer Anal Methods Geomech 17(8):577–598

    Article  Google Scholar 

  16. Lewis R, Majorana C, Schrefler B (1986) A coupled finite element model for the consolidation of nonisothermal elastoplastic porous media. Transport Porous Media 1(2):155–178

    Article  Google Scholar 

  17. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World scientific, Singapore

  18. Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15):1169–1178

    Article  MathSciNet  Google Scholar 

  19. Mandel J (1953) Consolidation des sols (étude mathématique). Geotechnique 3(7):287–299

    Article  Google Scholar 

  20. Minkoff SE, Stone CM, Bryant S, Peszynska M, Wheeler MF (2003) Coupled fluid flow and geomechanical deformation modeling. J Petroleum Sci Eng 38(1–2):37–56

    Article  Google Scholar 

  21. Monaghan J (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–74

    Article  Google Scholar 

  22. Morris J, Fox P, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226

    Article  Google Scholar 

  23. Pramanik R (2015) Development of numerical procedures in smoothed particle hydrodynamics for analysis of failure processes in geomaterials PhD thesis IIT Kharagpur

  24. Pramanik R, Deb D (2014) Sph procedures for modeling multiple intersecting discontinuities in geomaterial. Int J Numer Anal Methods Geomech. https://doi.org/10.1002/nag.2311

    Article  Google Scholar 

  25. Rice JR, Cleary MP (1976) Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys 14(2):227–241

    Article  Google Scholar 

  26. Roose T, Netti PA, Munn LL, Boucher Y, Jain RK (2003) Solid stress generated by spheroid growth estimated using a linear poroelasticity model. Microvasc Res 66(3):204–212

    Article  Google Scholar 

  27. Sen M, Ramos E (2012) A spatially non-local model for flow in porous media. Transp Porous Media 92(1):29–39

    Article  MathSciNet  Google Scholar 

  28. Settari A, Walters DA et al (2001) Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. Spe J 6(03):334-342

    Article  Google Scholar 

  29. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  MathSciNet  Google Scholar 

  30. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Computers Struct 83(17–18):1526–1535

    Article  Google Scholar 

  31. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MathSciNet  Google Scholar 

  32. Silvestre JR, Vargas Jr EdA, Vaz LE, Soares AC (2015) Modelling of coupled fluid-mechanical problems in fractured geological media using enriched finite elements. Int J Numer Anal Methods Geomech 39(10):1104–1140

    Article  Google Scholar 

  33. Skempton A (1954) The pore-pressure coefficients a and b. Geotechnique 4(4):143–147

    Article  Google Scholar 

  34. Swan C, Lakes R, Brand R, Stewart K (2003) Micromechanically based poroelastic modeling of fluid flow in Haversian bone. J Biomech Eng 125(1):25–37

    Article  Google Scholar 

  35. Cv Terzaghi (1925) Erdbaumechanik auf bodenphysikalischer Grundlage Deuticke

  36. Tran D, Settari A, Nghiem L et al (2004) New iterative coupling between a reservoir simulator and a geomechanics module. Spe J 9(03):362–369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Pramanik.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Deb, D. & Pramanik, R. Meshfree numerical procedure of Biot’s consolidation: a coupled smoothed particle hydrodynamics and peridynamics model. Comp. Part. Mech. 9, 775–788 (2022). https://doi.org/10.1007/s40571-021-00443-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00443-9

Keywords

Navigation