Skip to main content

Application of recent SPH formulations to simulate free-surface flow in a vertical slot fishway

Abstract

Several types of fishways are designed to allow the upstream passage of fish during the reproductive migration. Despite being the subject of many studies, improvements are still necessary to ensure an adequate flow for fish passage. This work aims to study the hydraulic parameters of the free-surface flow in the Igarapava HPP fishway, in Brazil, by comparing numerical results with available experimental data. Recent formulations for smoothed particle hydrodynamics were investigated in the numerical simulation using DualSPHysics. Open boundary conditions with buffer layers were applied to simulate inflow and outflow in the model. Three different model settings compared the effectiveness of the density diffusion term and the viscosity coefficient. Spurious oscillations were significantly reduced in the velocity field by using a combination of diffusion term and artificial viscosity coefficient that resulted in a smoothing effect near the walls and fewer oscillations in water level.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Martins SL (2005) Sistemas para a transposição de peixes neotropicais potamódromos. Ph.D. thesis, Universidade de São Paulo . https://doi.org/10.11606/T.3.2005.tde-13092005-084816

  2. 2.

    Mao X (2018) Review of fishway research in china. Ecol Eng 115:91–95. https://doi.org/10.1016/j.ecoleng.2018.01.010

    Article  Google Scholar 

  3. 3.

    Clay C.H (1995) Design of fishways and other fish facilities, 2nd edn. CRC Press, Boca Raton. https://doi.org/10.1201/9781315141046

    Book  Google Scholar 

  4. 4.

    FAO/DVWK (2002) Fish passes: design, dimensions and monitoring. Food and Agriculture Organization of the United Nations, Rome http://www.fao.org/3/y4454e/y4454e00.htm

  5. 5.

    Fish U.S., Wildlife Service (2017) Fish passage engineering design criteria. U.S. Fish and Wildlife Service, Hadley, Massachusetts . https://www.fws.gov/northeast/fisheries/pdf/USFWS-R5-2019-Fish-Passage-Engineering-Design-Criteria-190622.pdf

  6. 6.

    Li Y, Wang X, Xuan G, Liang D (2020) Effect of parameters of pool geometry on flow characteristics in low slope vertical slot fishways. J Hydraul Res 58(3):395–407. https://doi.org/10.1080/00221686.2019.1581666

    Article  Google Scholar 

  7. 7.

    Gomes D.S.M., Nascimento G.C. (2018) Application of a meshless CFD method for a vertical slot fish pass via 3D simulation. Int J Sci Eng Investig 7(72):147–151. http://www.ijsei.com/papers/ijsei-77218-21.pdf

  8. 8.

    Ceola S, Pugliese A, Ventura M, Galeati G, Montanari A, Castellarin A (2018) Hydro-power production and fish habitat suitability: assessing impact and effectiveness of ecological flows at regional scale. Adv Water Resour 116:29–39. https://doi.org/10.1016/j.advwatres.2018.04.002

    Article  Google Scholar 

  9. 9.

    Stamou AI, Mitsopoulos G, Rutschmann P, Bui MD (2018) Verification of a 3D CFD model for vertical slot fish-passes. Environ Fluid Mech. https://doi.org/10.1007/s10652-018-9602-z

    Article  Google Scholar 

  10. 10.

    Bombač M, Četina M, Novak G (2017) Study on flow characteristics in vertical slot fishways regarding slot layout optimization. Ecol Eng 107:126–136. https://doi.org/10.1016/j.ecoleng.2017.07.008

    Article  Google Scholar 

  11. 11.

    Duguay JM, Lacey RW, Gaucher J (2017) A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D. Ecol Eng 103:31–42. https://doi.org/10.1016/j.ecoleng.2017.01.042

    Article  Google Scholar 

  12. 12.

    Coletti JZ (2005) Características do escoamento ao longo de uma escada de peixes do tipo ranhura vertical. Master’s thesis, Universidade Federal do Rio Grande do Sul. http://hdl.handle.net/10183/7085

  13. 13.

    Maia BP, Ribeiro SMF, Bizzotto PM, Vono V, Godinho HP (2007) Reproductive activity and recruitment of the yellow-mandi Pimelodus maculatus (Teleostei: Pimelodidae) in the Igarapava Reservoir, Grande River, Southeast Brazil. Neotrop Ichthyol 5:147–152. https://doi.org/10.1590/S1679-62252007000200008

    Article  Google Scholar 

  14. 14.

    Bowen MD, Marques S, Silva LGM, Vono V, Godinho HP (2006) Comparing on site human and video counts at Igarapava fish ladder, south eastern Brazil. Neotrop Ichthyol 4:291–294. https://doi.org/10.1590/S1679-62252006000200017

    Article  Google Scholar 

  15. 15.

    Casali RCV, Vono V, Godinho HP, Luz RK, Bazzoli N (2010) Passage and reproductive activity of fishes in the Igarapava fish ladder, Grande River, Southeastern Brazil. River Res Appl 26(2):157–165. https://doi.org/10.1002/rra.1242

    Article  Google Scholar 

  16. 16.

    Bizzotto PM, Godinho AL, Vono V, Kynard B, Godinho HP (2009) Influence of seasonal, diel, lunar, and other environmental factors on upstream fish passage in the Igarapava Fish Ladder, Brazil. Ecol Freshw Fish 18(3):461–472. https://doi.org/10.1111/j.1600-0633.2009.00361.x

    Article  Google Scholar 

  17. 17.

    Marques GF, dos Santos Fernandes J, Santos H, Sala IL (2011) Modeling and optimization of fish passage structures. Bear Knowl Sustain. https://doi.org/10.1061/41173(414)440

    Article  Google Scholar 

  18. 18.

    Sanagiotto DG, Rossi JB, Lauffer LL, Bravo JM (2019) Three-dimensional numerical simulation of flow in vertical slot fishways: validation of the model and characterization of the flow. Revista Brasileira de Recursos Hidricos. https://doi.org/10.1590/2318-0331.241920180174

    Article  Google Scholar 

  19. 19.

    Viana EMdF, Martinez CB, Marques MG (2007) Mapeamento do Campo de Velocidades no Mecanismo de Transposição de Peixes do Tipo Ranhura Vertical Construído na UHE de Igarapava. RBRH Revista Brasileira de Recursos Hídricos 12:91–105. https://doi.org/10.21168/rbrh.v12n1.p5-15

  20. 20.

    Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024. https://doi.org/10.1086/112164

    Article  Google Scholar 

  21. 21.

    Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389. https://doi.org/10.1093/mnras/181.3.375

    Article  MATH  Google Scholar 

  22. 22.

    Monaghan J (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406. https://doi.org/10.1006/jcph.1994.1034

    Article  MATH  Google Scholar 

  23. 23.

    Crespo AJ, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O (2015) DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216. https://doi.org/10.1016/j.cpc.2014.10.004

    Article  MATH  Google Scholar 

  24. 24.

    Fourtakas G, Rogers BD (2016) Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU). Adv Water Resour 92:186–199. https://doi.org/10.1016/j.advwatres.2016.04.009

    Article  Google Scholar 

  25. 25.

    Mokos A, Rogers BD, Stansby PK, Domínguez JM (2015) Multi-phase SPH modelling of violent hydrodynamics on GPUs. Comput Phys Commun 196:304–316. https://doi.org/10.1016/j.cpc.2015.06.020

    Article  Google Scholar 

  26. 26.

    Domínguez JM, Crespo AJ, Valdez-Balderas D, Rogers BD, Gómez-Gesteira M (2013) New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Comput Phys Commun. https://doi.org/10.1016/j.cpc.2013.03.008

    Article  Google Scholar 

  27. 27.

    Domìnguez JM, Fourtakas G, Altomare C, Canelas RB, Tafuni A, García-Feal O, Martínez-Estévez I, Mokos A, Vacondio R, Crespo AJC et al (2021) Dualsphysics: from fluid dynamics to multiphysics problems. Comput Part Mech. https://doi.org/10.1007/s40571-021-00404-2

    Article  Google Scholar 

  28. 28.

    González-Cao J, García-Feal O, Domínguez JM, Crespo AJC, Gómez-Gesteira M (2018) Analysis of the hydrological safety of dams combining two numerical tools: Iber and DualSPHysics. J Hydrodyn 30(1):87–94. https://doi.org/10.1007/s42241-018-0009-6

    Article  Google Scholar 

  29. 29.

    Zhang F, Crespo A, Altomare C, Domínguez J, Marzeddu A, Shang SP, Gómez-Gesteira M (2018) DualSPHysics: a numerical tool to simulate real breakwaters. J Hydrodyn 30(1):95–105. https://doi.org/10.1007/s42241-018-0010-0

    Article  Google Scholar 

  30. 30.

    Altomare C, Tafuni A, Domínguez JM, Crespo AJC, Gironella X, Sospedra J (2020) SPH simulations of real sea waves impacting a large-scale structure. J Mar Sci Eng 8(10):826

    Article  Google Scholar 

  31. 31.

    Tafuni A, Sahin I (2014) Seafloor pressure signatures of a high-speed boat in shallow water with SPH. https://doi.org/10.1115/OMAE2014-24080

  32. 32.

    Hosain M, Domínguez J, Bel Fdhila R, Kyprianidis K (2019) Smoothed particle hydrodynamics modeling of industrial processes involving heat transfer. Appl Energy 252:113441. https://doi.org/10.1016/j.apenergy.2019.113441

    Article  Google Scholar 

  33. 33.

    López D, Marivela R (2009) Applications of the SPH Model to the design of fishways. In: Proceedings of 33rd congress of IAHR. Water engineering for a sustainable environment the international, Vancouvert, pp 9–14

  34. 34.

    Ferrand M, Laurence D, Rogers B, Violeau D, Kassiotis C (2012) Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. Int J Numer Methods Fluids. https://doi.org/10.1002/fld.3666

    Article  MATH  Google Scholar 

  35. 35.

    Novak G, Tafuni A, Domínguez JM, Četina M, Žagar D (2019) A numerical study of fluid flow in a vertical slot fishway with the smoothed particle hydrodynamics method. Water (Switzerland) 11(9):1–23. https://doi.org/10.3390/w11091928

    Article  Google Scholar 

  36. 36.

    Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180(6):861–872. https://doi.org/10.1016/j.cpc.2008.12.004

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Fourtakas G, Dominguez JM, Vacondio R, Rogers BD (2019) Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models. Comput Fluids 190:346–361. https://doi.org/10.1016/j.compfluid.2019.06.009

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396. https://doi.org/10.1007/BF02123482

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Altomare C, Crespo AJ, Domínguez JM, Gómez-Gesteira M, Suzuki T, Verwaest T (2015) Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures. Coast Eng 96:1–12. https://doi.org/10.1016/j.coastaleng.2014.11.001

    Article  Google Scholar 

  40. 40.

    Leimkuhler BJ, Reich S, Skeel RD (1996) Integration methods for molecular dynamics. Springer, New York, pp 161–185

    MATH  Google Scholar 

  41. 41.

    Vacondio R, Altomare C, Leffe MD, Hu X, Le D, Steven T, Salvatore JCM, Benedict M, Antonio DR, Rogers BD (2020) Grand challenges for smoothed particle hydrodynamics numerical schemes. Comput Part Mech. https://doi.org/10.1007/s40571-020-00354-1

    Article  Google Scholar 

  42. 42.

    Green MD, Vacondio R, Peiró J (2019) A smoothed particle hydrodynamics numerical scheme with a consistent diffusion term for the continuity equation. Comput Fluids 179:632–644. https://doi.org/10.1016/j.compfluid.2018.11.020

    MathSciNet  Article  MATH  Google Scholar 

  43. 43.

    Verbrugghe T, Domínguez JM, Altomare C, Tafuni A, Vacondio R, Troch P, Kortenhaus A (2019) Non-linear wave generation and absorption using open boundaries within DualSPHysics. Comput Phys Commun 240:46–59. https://doi.org/10.1016/j.cpc.2019.02.003

    Article  Google Scholar 

  44. 44.

    Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comput Phys Commun 181(3):532–549. https://doi.org/10.1016/j.cpc.2009.11.002

    MathSciNet  Article  MATH  Google Scholar 

  45. 45.

    Vacondio R, Rogers BD, Stansby PK, Mignosa P, Feldman J (2013) Variable resolution for SPH: a dynamic particle coalescing and splitting scheme. Comput Methods Appl Mech Eng 256:132–148. https://doi.org/10.1016/j.cma.2012.12.014

    MathSciNet  Article  MATH  Google Scholar 

  46. 46.

    Sun PN, Colagrossi A, Marrone S, Antuono M, Zhang AM (2018) Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows. Comput Phys Commun 224:63–80. https://doi.org/10.1016/j.cpc.2017.11.016

    MathSciNet  Article  Google Scholar 

  47. 47.

    English A, Domínguez J, Vacondio R, Crespo A, Stansby P, Lind S, Chiapponi L, Gómez-Gesteira M (2021) Modified dynamic boundary conditions (mdbc) for general-purpose smoothed particle hydrodynamics (sph): application to tank sloshing, dam break and fish pass problems. Comput Part Mech. https://doi.org/10.1007/s40571-021-00403-3

    Article  Google Scholar 

  48. 48.

    Skillen A, Lind S, Stansby PK, Rogers BD (2013) Incompressible smoothed particle hydrodynamics (sph) with reduced temporal noise and generalised fickian smoothing applied to body-water slam and efficient wave-body interaction. Comput Methods Appl Mech Eng 265:163–173. https://doi.org/10.1016/j.cma.2013.05.017

    MathSciNet  Article  MATH  Google Scholar 

  49. 49.

    Schryen G (2020) Parallel computational optimization in operations research: a new integrative framework, literature review and research directions. Eur J Oper Res 287(1):1–18. https://doi.org/10.1016/j.ejor.2019.11.033

    MathSciNet  Article  MATH  Google Scholar 

  50. 50.

    Liu MB, Liu GR (2006) Restoring particle consistency in smoothed particle hydrodynamics. Appl Numer Math 56(1):19–36. https://doi.org/10.1016/j.apnum.2005.02.012

    MathSciNet  Article  MATH  Google Scholar 

  51. 51.

    Tafuni A, Domínguez JM, Vacondio R, Crespo AJ (2018) A versatile algorithm for the treatment of open boundary conditions in smoothed particle hydrodynamics GPU models. Comput Methods Appl Mech Eng 342:604–624. https://doi.org/10.1016/j.cma.2018.08.004

    MathSciNet  Article  MATH  Google Scholar 

  52. 52.

    Ayachit U (2015)The ParaView guide: a parallel visualization application. Kitware, Inc., Clifton Park, NY, USA. https://doi.org/10.5555/2789330

  53. 53.

    Sanagiotto DG, Rossi JB, Bravo JM (2019) Applications of computational fluid dynamics in the design and rehabilitation of nonstandard vertical slot fishways. Water (Switzerland). https://doi.org/10.3390/w11020199

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Esteban Clua and Carlos Cunha for their support in running the experiments at Media Lab UFF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniela dos Santos da Mata Gomes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomes, D.d.S.d.M., da Hora, M.d.A.G.M. & Nascimento, G.d.C. Application of recent SPH formulations to simulate free-surface flow in a vertical slot fishway. Comp. Part. Mech. (2021). https://doi.org/10.1007/s40571-021-00416-y

Download citation

Keywords

  • Vertical slot fishway
  • SPH
  • Numerical model
  • CFD
  • Turbulent flow
  • DualSPHysics