Application of SPH method for modeling of metal extrusion process

Abstract

Numerical models are widely used for the prediction of stress and strains that the materials undergo in extrusion processes. These factors affect the quality of the extruded product as well as the speed of production process. Due to its meshless nature, the smooth particle hydrodynamics (SPH) method is capable of simulating processes where severe deformations occur. Therefore, it is highly suitable for modeling of extrusion processes. In this study, the SPH method is used for the simulation of extrusion processes for two different geometries of the die cross section. For all cases, a parametric analysis on friction was conducted and the influence on the strain fields as well as the extrusion forces was investigated. Also, in order to calibrate the models to predict the experimental forces, it was necessary to use different friction coefficients for the die and the container section. The SPH method modeled accurately the influence of each section’s frictional forces on the strain field and extrusion forces. Furthermore, the calibrated models were able to capture the experimental data with a 10% accuracy for a range of different values for the initial billet temperature and ram speed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data availability

The authors declare that data supporting the findings of this study can be found within the article.

References

  1. 1.

    Bauser M, Sauer G, Siegert K (2006) Extrusion, 2nd edn. ASM International, Materials Park

    Google Scholar 

  2. 2.

    Sheppard T (1999) Extrusion of aluminium alloys. Springer, Boston

    Book  Google Scholar 

  3. 3.

    Lee EH, Mallett RL, Yang WH (1977) Stress and deformation analysis of the metal extrusion process. Comput Methods Appl Mech Eng 10:339–353. https://doi.org/10.1016/0045-7825(77)90077-9

    Article  Google Scholar 

  4. 4.

    Lim LG, Dunne FPE (1997) Modelling central bursting in the extrusion of particulate reinforced metal matrix composite materials. Int J Mach Tools Manuf 37:901–915. https://doi.org/10.1016/S0890-6955(97)82476-5

    Article  Google Scholar 

  5. 5.

    Gouveia BPPA, Rodrigues JMC, Martins PAF (1998) Finite element modelling of cold forward extrusion using updated Lagrangian and combined Eulerian-Lagrangian formulations. J Mater Process Technol 80–81:647–652. https://doi.org/10.1016/S0924-0136(98)00172-1

    Article  Google Scholar 

  6. 6.

    Ko D-C, Kim B-M (2000) The prediction of central burst defects in extrusion and wire drawing. J Mater Process Technol 102:19–24. https://doi.org/10.1016/S0924-0136(99)00461-6

    Article  Google Scholar 

  7. 7.

    Flitta I, Sheppard T (2003) Nature of friction in extrusion process and its effect on material flow. Mater Sci Technol 19:837–846. https://doi.org/10.1179/026708303225004422

    Article  Google Scholar 

  8. 8.

    Komori K (2003) Effect of ductile fracture criteria on chevron crack formation and evolution in drawing. Int J Mech Sci 45:141–160. https://doi.org/10.1016/S0020-7403(03)00035-3

    Article  MATH  Google Scholar 

  9. 9.

    Kazanowski P, Epler ME, Misiolek WZ (2004) Bi-metal rod extrusion-process and product optimization. Mater Sci Eng A 369:170–180. https://doi.org/10.1016/j.msea.2003.11.002

    Article  Google Scholar 

  10. 10.

    Saanouni K, Mariage JF, Cherouat A, Lestriez P (2004) Numerical prediction of discontinuous central bursting in axisymmetric forward extrusion by continuum damage mechanics. Comput Struct 82:2309–2332. https://doi.org/10.1016/j.compstruc.2004.05.018

    Article  Google Scholar 

  11. 11.

    Noorani-Azad M, Bakhshi-Jooybari M, Hosseinipour SJ, Gorji A (2005) Experimental and numerical study of optimal die profile in cold forward rod extrusion of aluminum. J Mater Process Technol 164–165:1572–1577. https://doi.org/10.1016/j.jmatprotec.2005.02.019

    Article  Google Scholar 

  12. 12.

    Tiernan P, Hillery MT, Draganescu B, Gheorghe M (2005) Modelling of cold extrusion with experimental verification. J Mater Process Technol 168:360–366. https://doi.org/10.1016/j.jmatprotec.2005.02.249

    Article  Google Scholar 

  13. 13.

    Chen D-C, Syu S-K, Wu C-H, Lin S-K (2007) Investigation into cold extrusion of aluminum billets using three-dimensional finite element method. J Mater Process Technol 192–193:188–193. https://doi.org/10.1016/j.jmatprotec.2007.04.067

    Article  Google Scholar 

  14. 14.

    Farjad Bastani A, Aukrust T, Brandal S (2011) Optimisation of flow balance and isothermal extrusion of aluminium using finite-element simulations. J Mater Process Technol 211:650–667. https://doi.org/10.1016/j.jmatprotec.2010.11.021

    Article  Google Scholar 

  15. 15.

    Liu P, Xie S, Cheng L (2012) Die structure optimization for a large, multi-cavity aluminum profile using numerical simulation and experiments. Mater Des 1980–2015(36):152–160. https://doi.org/10.1016/j.matdes.2011.11.013

    Article  Google Scholar 

  16. 16.

    Zhang C, Zhao G, Chen H et al (2012) Numerical simulation and metal flow analysis of hot extrusion process for a complex hollow aluminum profile. Int J Adv Manuf Technol 60:101–110. https://doi.org/10.1007/s00170-011-3609-7

    Article  Google Scholar 

  17. 17.

    Bai S, Fang G (2020) Experimental and numerical investigation into rectangular tube extrusion of high-strength magnesium alloy. Int J Lightweight Mater Manuf 3:136–143. https://doi.org/10.1016/j.ijlmm.2019.11.001

    Article  Google Scholar 

  18. 18.

    Fernández-Méndez S, Bonet J, Huerta A (2005) Continuous blending of SPH with finite elements. Comput Struct 83:1448–1458. https://doi.org/10.1016/j.compstruc.2004.10.019

    MathSciNet  Article  Google Scholar 

  19. 19.

    Alfaro I, Yvonnet J, Cueto E et al (2006) Meshless methods with application to metal forming. Comput Methods Appl Mech Eng 195:6661–6675. https://doi.org/10.1016/j.cma.2004.10.017

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Alfaro I, Bel D, Cueto E et al (2006) Three-dimensional simulation of aluminium extrusion by the α-shape based natural element method. Comput Methods Appl Mech Eng 195:4269–4286. https://doi.org/10.1016/j.cma.2005.08.006

    Article  MATH  Google Scholar 

  21. 21.

    Xiong S, Martins PAF (2006) Numerical solution of bulk metal forming processes by the reproducing kernel particle method. J Mater Process Technol 177:49–52. https://doi.org/10.1016/j.jmatprotec.2006.03.204

    Article  Google Scholar 

  22. 22.

    Cleary PW, Prakash M, Ha J (2006) Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. J Mater Process Technol 177:41–48. https://doi.org/10.1016/j.jmatprotec.2006.03.237

    Article  Google Scholar 

  23. 23.

    Cleary PW, Prakash M, Das R, Ha J (2012) Modelling of metal forging using SPH. Appl Math Model 36:3836–3855. https://doi.org/10.1016/j.apm.2011.11.019

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Lu P, Huang S, Jiang K (2013) Numerical analysis for three-dimensional bulk metal forming processes with arbitrarily shaped dies using the rigid/visco-plastic element free Galerkin method. Rev Adv Mater Sci 33:416–422

    Google Scholar 

  25. 25.

    Prakash M, Cleary PW (2015) Modelling highly deformable metal extrusion using SPH. Comput Part Mech 2:19–38. https://doi.org/10.1007/s40571-015-0032-0

    Article  Google Scholar 

  26. 26.

    Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, New Jersey

    Book  Google Scholar 

  27. 27.

    Vila JP (2005) SPH renormalized hybrid methods for conservation laws: applications to free surface flows. In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations II. Springer, Heidelberg, pp 207–229

    Chapter  Google Scholar 

  28. 28.

    Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149:135–143

    MATH  Google Scholar 

  29. 29.

    Libersky LD, Petschek AG (1991) Smooth particle hydrodynamics with strength of materials. In: Trease HE, Fritts MF, Crowley WP (eds) Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method. Springer, Berlin, pp 248–257

    Chapter  Google Scholar 

  30. 30.

    Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190:6641–6662. https://doi.org/10.1016/S0045-7825(01)00254-7

    Article  MATH  Google Scholar 

  31. 31.

    Hallquist JO (2006) LS-DYNA theory manual-March 2006. LSTC

  32. 32.

    Subramaniyan J (1989) Extrusion of 2024 aluminium alloy sections. London University, London

    Google Scholar 

  33. 33.

    Sellars CM, Tegart WJM (1972) Hot workability. Int Metall Rev 17:1–24

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adam D. Lampropoulos.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lampropoulos, A.D., Manolakos, D.E. Application of SPH method for modeling of metal extrusion process. Comp. Part. Mech. (2021). https://doi.org/10.1007/s40571-021-00414-0

Download citation

Keywords

  • Smooth particle hydrodynamics
  • Numerical simulation
  • Metal forming
  • Extrusion
  • Parametric analysis