Controlling the clustering behavior of particulate colloidal systems using alternating and rotating magnetic fields


Particle aggregates are often formed in particulate colloids. Different biological and industrial applications have specific preferences of particle cluster sizes. In this study, a computational model is developed to evaluate two novel strategies in controlling the aggregation behavior of magnetic-responsive particles using rotating and alternating magnetic fields. Computational fluid dynamics approach is adopted to model the base fluid, and a comprehensive soft sphere model is used to simulate the particle behaviors, with two-way coupling between the two phases. Under a static magnetic field with constant magnitude and direction, it is observed that magnetic-responsive particles form chain-like structures parallel to the direction of the magnetic field with an average longest dimension of about 8 µm when steady state is reached. When an external magnetic field with constant magnitude in a clockwise rotating direction is applied, particle aggregation is encouraged, and the chain-like structures formed are longer than in the static magnetic field case. When the direction of a constant-magnitude magnetic field alternates between two perpendicular directions, complete particle disaggregation is observed periodically. Three different frequencies are tested for the rotational and alternating magnetic field cases. It is observed that low-frequency rotating magnetic field is the most effective in encouraging particle aggregation with an average longest dimension of about 13 µm under steady-state, and high frequency alternating magnetic field is the most effective in disaggregating magnetic-responsive particle clusters, where the average longest dimension fluctuates between 3 and 5 µm under steady-state.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Riazi A, Türker U (2019) The drag coefficient and settling velocity of natural sediment particles. Comput Particle Mech 6(3):427–437.

    Article  Google Scholar 

  2. 2.

    Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano. J Geophys Res Solid Earth 87(B8):7061–7072.

    Article  Google Scholar 

  3. 3.

    Textor C, Graf HF, Herzog M, Oberhuber JM, Rose WI, Ernst GGJ (2006) Volcanic particle aggregation in explosive eruption columns. Part I: parameterization of the microphysics of hydrometeors and ash. J Volcanol Geotherm Res 150(4):359–377.

    Article  Google Scholar 

  4. 4.

    Textor C, Graf HF, Herzog M, Oberhuber JM, Rose WI, Ernst GGJ (2006) Volcanic particle aggregation in explosive eruption columns. Part II: numerical experiments. J Volcanol Geotherm Res 150(4):378–394.

    Article  Google Scholar 

  5. 5.

    Liu Y, Liu WK (2006) Rheology of red blood cell aggregation by computer simulation. J Comput Phys 220(1):139–154.

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC (2004) The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys J 87(6):4259–4270.

    Article  Google Scholar 

  7. 7.

    Masoumi N, Sohrabi N, Behzadmehr A (2009) A new model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys 42(5):055501

    Article  Google Scholar 

  8. 8.

    Duan F, Kwek D, Crivoi A (2011) Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids. Nanoscale Res Lett 6(1):248.

    Article  Google Scholar 

  9. 9.

    Pastoriza-Gallego MJ, Casanova C, Páramo R, Barbés B, Legido JL, Piñeiro MM (2009) A study on stability and thermophysical properties (density and viscosity) of Al2O3 in water nanofluid. J Appl Phys 106(6):064301.

    Article  Google Scholar 

  10. 10.

    Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043.

    Article  Google Scholar 

  11. 11.

    Norman TJ, Grant CD, Magana D, Zhang JZ, Liu J, Cao D et al (2002) Near infrared optical absorption of gold nanoparticle aggregates. J Phys Chem B 106(28):7005–7012.

    Article  Google Scholar 

  12. 12.

    Li DD, Keogh DF, Huang K, Chan QN, Yuen ACY, Menictas C et al (2019) Modeling the response of magnetorheological fluid dampers under seismic conditions. Appl Sci 9(19):4189.

    Article  Google Scholar 

  13. 13.

    Moghadam MGE, Shahmardan MM, Norouzi M (2020) Magneto-rheological damper modeling by using dissipative particle dynamics method. Comput Particle Mech 7(3):567–592.

    Article  Google Scholar 

  14. 14.

    Nunayon SS, Zhang HH, Lai ACK (2018) Deposition of ultrafine particle in a duct flow by twisted-tape insert. Build Environ 136:156–161.

    Article  Google Scholar 

  15. 15.

    Lee A, Li DD, Lau GE, Yeoh GH (2014) Thermal performance of nanofluids in microchannel equipped with a synthetic jet actuator. In: International heat transfer conference. Kyoto, Japan: international heat transfer conference digital library, pp 3949–63.

  16. 16.

    Kelly M, Yeoh GH, Timchenko V (2015) On computational fluid dynamics study of magnetic drug targeting. J Comput Multiph Flows 7(1):43–56.

    MathSciNet  Article  Google Scholar 

  17. 17.

    Nikookar H, Abouali O, Eghtesad M, Sadrizadeh S, Ahmadi G (2019) Enhancing drug delivery to human trachea through oral airway using magnetophoretic steering of microsphere carriers composed of aggregated superparamagnetic nanoparticles and nanomedicine: a numerical study. J Aerosol Sci 127:63–92.

    Article  Google Scholar 

  18. 18.

    Kwok PCL, Li DD, Tang P, Fincher L, Browne E, Finlay WH et al (2021) Generation and characterization of electrostatically charged radiolabelled aerosols for lung scintigraphy. Aerosol Sci Technol.

    Article  Google Scholar 

  19. 19.

    Chow MYT, Kwok PCL, Yang R, Chan H-K (2020) Predicting the composition and size distribution of dry particles for aerosols and sprays of suspension: a Monte Carlo approach. Int J Pharm 582:119311.

    Article  Google Scholar 

  20. 20.

    Inthavong K, Tian ZF, Li HF, Tu JY, Yang W, Xue CL et al (2006) A numerical study of spray particle deposition in a human nasal cavity. Aerosol Sci Technol 40(11):1034–1045.

    Article  Google Scholar 

  21. 21.

    Li DD, Gu X, Timchenko V, Chan QN, Yuen ACY, Yeoh GH (2018) Study of morphology and optical properties of gold nanoparticle aggregates under different pH conditions. Langmuir 34(35):10340–10352.

    Article  Google Scholar 

  22. 22.

    Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES et al (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183.

    Article  Google Scholar 

  23. 23.

    Gu X, Li DD, Yeoh GH, Taylor RA, Timchenko V (2021) Heat generation in irradiated gold nanoparticle solutions for hyperthermia applications. Processes 9(2):368.

    Article  Google Scholar 

  24. 24.

    Kobayashi M, Juillerat F, Galletto P, Bowen P, Borkovec M (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21(13):5761–5769.

    Article  Google Scholar 

  25. 25.

    Elmsahli HS, Sinka IC (2020) A discrete element study of the effect of particle shape on packing density of fine and cohesive powders. Comput Particle Mech.

    Article  Google Scholar 

  26. 26.

    Gui N, Fan J, Chen S (2011) The effects of flow structure and particle mass loading on particle dispersion in particle-laden swirling jets. Phys Lett A 375(4):839–844.

    Article  Google Scholar 

  27. 27.

    Moussa AS, Lattuada M, Conchúir BÓ, Zaccone A, Morbidelli M, Soos M (2013) Flow-induced aggregation and breakup of particle clusters controlled by surface nanoroughness. Langmuir 29(47):14386–14395.

    Article  Google Scholar 

  28. 28.

    Hanus LH, Hartzler RU, Wagner NJ (2001) Electrolyte-induced aggregation of acrylic latex. 1. dilute particle concentrations. Langmuir 17(11):3136–3147.

    Article  Google Scholar 

  29. 29.

    Bhagavathi Kandy S, Mehdipour I, Neithalath N, Bauchy M, Garboczi E, Srivastava S et al (2020) Temperature-induced aggregation in portlandite suspensions. Langmuir 36(36):10811–10821.

    Article  Google Scholar 

  30. 30.

    Wang C, Chan QN, Kook S, Hawkes ER, Lee J, Medwell PR (2016) External irradiation effect on the growth and evolution of in-flame soot species. Carbon 102:161–171.

    Article  Google Scholar 

  31. 31.

    Gong J, Wu N (2017) Electric-field assisted assembly of colloidal particles into ordered nonclose-packed arrays. Langmuir 33(23):5769–5776.

    Article  Google Scholar 

  32. 32.

    Gregory J (2009) Monitoring particle aggregation processes. Adv Coll Interface Sci 147–148:109–123.

    Article  Google Scholar 

  33. 33.

    Chan QN, Medwell PR, Dally BB, Alwahabi ZT, Nathan GJ (2012) New seeding methodology for gas concentration measurements. Appl Spectrosc 66(7):803–809.

    Article  Google Scholar 

  34. 34.

    Medwell PR, Nathan GJ, Chan QN, Alwahabi ZT, Dally BB (2011) The influence on the soot distribution within a laminar flame of radiation at fluxes of relevance to concentrated solar radiation. Combust Flame 158(9):1814–1821.

    Article  Google Scholar 

  35. 35.

    Gao Y, van Reenen A, Hulsen MA, de Jong AM, Prins MWJ, den Toonder JMJ (2013) Disaggregation of microparticle clusters by induced magnetic dipole–dipole repulsion near a surface. Lab Chip 13(7):1394–1401.

    Article  Google Scholar 

  36. 36.

    Gao Y, van Reenen A, Hulsen MA, de Jong AM, Prins MWJ, den Toonder JMJ (2014) Chaotic fluid mixing by alternating microparticle topologies to enhance biochemical reactions. Microfluid Nanofluid 16(1):265–274.

    Article  Google Scholar 

  37. 37.

    Marshall JS (2009) Discrete-element modeling of particulate aerosol flows. J Comput Phys 228(5):1541–1561.

    Article  MATH  Google Scholar 

  38. 38.

    Xiao H, Sun J (2015) Algorithms in a robust hybrid CFD-DEM solver for particle-laden flows. Commun Comput Phys 9(2):297–323.

    Article  MATH  Google Scholar 

  39. 39.

    Khare P, Wang S, Yang V (2015) Modeling of finite-size droplets and particles in multiphase flows. Chin J Aeronaut 28(4):974–982.

    Article  Google Scholar 

  40. 40.

    Kundu PK, Cohen IM, Dowling DR (2016) Chapter 14 - Aerodynamics. In: Kundu PK, Cohen IM, Dowling DR (eds) Fluid Mechanics, 6th edn. Academic Press, Boston, pp 773–817

    Chapter  Google Scholar 

  41. 41.

    Montoya G, Sanyal J, Braun M, Azhar M (2019) On the assessment, implementation, validation, and verification of drag and lift forces in gas–liquid applications for the CFD codes FLUENT and CFX. Exp Comput Multiph Flow 1(4):255–270.

    Article  Google Scholar 

  42. 42.

    Ounis H, Ahmadi G, McLaughlin JB (1991) Brownian diffusion of submicrometer particles in the viscous sublayer. J Colloid Interface Sci 143(1):266–277.

    Article  Google Scholar 

  43. 43.

    Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22(2):385–400.

    Article  MATH  Google Scholar 

  44. 44.

    Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  45. 45.

    Hunter RJ (2001) Foundations of colloid science, 2nd edn. Oxford University Press, Oxford

  46. 46.

    Mindlin RD (1949) Compliance of elastic bodies in contact. J Appl Mech Trans ASME 16:259–268

    MathSciNet  Article  Google Scholar 

  47. 47.

    Dominik C, Tielens AGGM (1995) Resistance to rolling in the adhesive contact of two elastic spheres. Philos Mag A 72(3):783–803.

    Article  Google Scholar 

  48. 48.

    Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71(3):239–250.

    Article  Google Scholar 

  49. 49.

    Cundall P, Strack O (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  50. 50.

    Dance SL, Maxey MR (2003) Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J Comput Phys 189(1):212–238.

    MathSciNet  Article  MATH  Google Scholar 

  51. 51.

    Kroupa M, Vonka M, Soos M, Kosek J (2016) Utilizing the discrete element method for the modeling of viscosity in concentrated suspensions. Langmuir 32(33):8451–8460.

    Article  Google Scholar 

  52. 52.

    Yung KW, Landecker PB, Villani DD (1998) An analytic solution for the force between two magnetic dipoles. Magn Electr Sep 9(1):39–52.

    Article  Google Scholar 

  53. 53.

    Cregg PJ, Murphy K, Mardinoglu A (2009) Inclusion of magnetic dipole–dipole and hydrodynamic interactions in implant-assisted magnetic drug targeting. J Magn Magn Mater 321(23):3893–3898.

    Article  MATH  Google Scholar 

  54. 54.

    Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527.

    Article  Google Scholar 

  55. 55.

    Kroupa M, Vonka M, Soos M, Kosek J (2015) Size and structure of clusters formed by shear induced coagulation: modeling by discrete element method. Langmuir 31(28):7727–7737.

    Article  Google Scholar 

  56. 56.

    Thompson DW, Collins IR (1994) Electrolyte-induced aggregation of gold particles on solid surfaces. J Colloid Interface Sci 163(2):347–354.

    Article  Google Scholar 

  57. 57.

    Wise N, Grob T, Morten K, Thompson I, Sheard S (2015) Magnetophoretic velocities of superparamagnetic particles, agglomerates and complexes. J Magn Magn Mater 384:328–334.

    Article  Google Scholar 

  58. 58.

    Grob DT, Wise N, Oduwole O, Sheard S (2018) Magnetic susceptibility characterisation of superparamagnetic microspheres. J Magn Magn Mater 452:134–140.

    Article  Google Scholar 

  59. 59.

    Li DD, Yeoh GH, Timchenko V, Lam HF (2017) Numerical modeling of magnetic nanoparticle and carrier fluid interactions under static and double-shear flows. IEEE Trans Nanotechnol 16(5):798–805.

    Article  Google Scholar 

  60. 60.

    Li DD, Yeoh GH, Timchenko V, Lam HF (2016) Numerical modelling of magnetic nanoparticle and carrier fluid interactions. In: 2016 IEEE nanotechnology materials and devices conference (NMDC). Toulouse, France. Pp 1–3.

  61. 61.

    Rich JP, McKinley GH, Doyle PS (2012) Arrested chain growth during magnetic directed particle assembly in yield stress matrix fluids. Langmuir 28(8):3683–3689.

    Article  Google Scholar 

  62. 62.

    Chan QN, Medwell PR, Nathan GJ (2014) Algorithm for soot sheet quantification in a piloted turbulent jet non-premixed natural gas flame. Exp Fluids 55(10):1827.

    Article  Google Scholar 

  63. 63.

    Wang C, Chan QN, Zhang R, Kook S, Hawkes ER, Yeoh GH et al (2016) Automated determination of size and morphology information from soot transmission electron microscope (TEM)-generated images. J Nanopart Res 18(5):127.

    Article  Google Scholar 

  64. 64.

    Serra T, Colomer J, Casamitjana X (1997) Aggregation and breakup of particles in a shear flow. J Colloid Interface Sci 187(2):466–473.

    Article  Google Scholar 

  65. 65.

    Oles V (1992) Shear-induced aggregation and breakup of polystyrene latex particles. J Colloid Interface Sci 154(2):351–358.

    MathSciNet  Article  Google Scholar 

Download references


This research is supported by the Australian Research Council (ARC Project ID DP150101065 and DP160100021). The authors acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp and Quadro GPUs used to perform the computations in this study.


This research is supported by the Australian Research Council (ARC Project ID DP150101065 and DP160100021).

Author information




The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. D. D. L developed the computational model, conducted the simulations, and wrote the manuscript. Q. N. C developed the image processing technique for the post-processing of data. V. T. provided technical knowledge and contributed to the development of the computational model. G. H. Y. is the leader of this project, and also provided technical knowledge and contributed to the development of the computational model.

Corresponding author

Correspondence to Darson D. Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, D.D., Chan, Q.N., Timchenko, V. et al. Controlling the clustering behavior of particulate colloidal systems using alternating and rotating magnetic fields. Comp. Part. Mech. (2021).

Download citation


  • Computational fluid dynamics
  • Discrete phase modeling
  • Magnetic particle
  • Particulate colloid
  • Particle aggregation
  • Soft sphere model