Skip to main content
Log in

Erosion dynamics of wet particle agglomerates

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

We study the erosion dynamics of wet particle agglomerates inside a simple shear flow of noncohesive granular materials by relying on the three-dimensional discrete-element simulations. The simulation model is discretized by assembling of wet and dry spherical particles. By systematically varying different parameters related to the shear flow of dry particles (the shear rate), the wet agglomerates (the amount of the binding liquid in the “pendular” state, the liquid viscosity, and the liquid–vapor surface tension), and the relative dry–wet density as well as the initial position of wet agglomerates, we measure the erosion of these agglomerates on their surface by quantifying the cumulative number of eroded particles. We show that the erosion rate increases proportionally to the inertial number and the height of the agglomerates decreases linearly with the liquid content and the liquid viscosity and decreases nonlinearly with the cohesion index (or liquid–vapor surface tension) for each value of the inertial number, whereas this rate is nearly independent to the relative dry–wet density with a low shear rate. It is worth noting that the normalized erosion rate by the shear rate collapses well on a master curve as a cutoff function of the erosion scaling parameter (combining the inertial number, the cohesion index, and the Stokes number), thus providing clear evidence for the unified description of the material and flow parameters on the erosion of wet agglomerates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sastry KV, Dontula P, Hosten C (2003) Investigation of the layering mechanism of agglomerate growth during drum pelletization. Powder Technol 130(1):231–237

    Google Scholar 

  2. Aguado R, Roudier S, Delagado L (eds) (2013) Best available techniques (BAT) reference document for iron and steel production. Joint Research Centre of the European Commission, Luxembourg: Publications Office of the European Union

  3. Walker GM (2007) Chapter 4 Drum granulation processes. In: Handbook of powder technology, Granulation, vol 11, pp 219–254

  4. Rondet E, Delalonde M, Ruiz T, Desfoursb JP (2010) Fractal formation description of agglomeration in low shear mixer. Chem Eng J 164:376–382

    Google Scholar 

  5. Barkouti A, Rondet E, Delalonde M, Ruiz T (2012) Influence of physicochemical binder properties on agglomeration of wheat powder in couscous grain. J Food Eng 111:234–240

    Google Scholar 

  6. Nosrati A, Addai-Mensah J, Robinson DJ (2012) Drum agglomeration behavior of nickel laterite ore: effect of process variables. Hydrometallurgy 125–126:90–99

    Google Scholar 

  7. Iveson SM, Litster JD, Hapgood K, Ennis BJ (2001) Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol 117(1):3–39

    Google Scholar 

  8. Chien S H, Carmona G, Prochnow L I, Austin E R (2003) Cadmium availability from granulated and bulk-blended phosphate–potassium fertilizers. J Environ Qual 32(5):1911–1914

    Google Scholar 

  9. Suresh P, Sreedhar I, Vaidhiswaran R, Venugopal A (2017) A comprehensive review on process and engineering aspects of pharmaceutical wet granulation. Chem Eng J 328:785–815

    Google Scholar 

  10. Nimmo J (2005) Aggregation | physical aspects. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 28–35

    Google Scholar 

  11. Sarkar J, Dubey D (2016) Failure regimes of single wet granular aggregate under shear. J Non-Newton Fluid Mech 234:236–248

    MathSciNet  Google Scholar 

  12. Lefebvre G, Jop P (2013) Erosion dynamics of a wet granular medium. Phys Rev E Stat Nonlinear Soft Matter Phys 8:032205

    Google Scholar 

  13. Vo T-Trung, Nezamabadi S, Mutabaruka P, Delenne J-Y, Izard E, Pellenq R, Radjai F (2019) Agglomeration of wet particles in dense granular flows. Eur Phys J E 42(9):127

    Google Scholar 

  14. Vo T-Trung, Mutabaruka P, Nezamabadi S, Delenne J-Y, Radjai F (2020) Evolution of wet agglomerates inside inertial shear flow of dry granular materials. Phys Rev E 101:032906

    Google Scholar 

  15. Taboada A, Estrada N, Radjaï F (2006) Additive decomposition of shear strength in cohesive granular media from grain-scale interactions. Phys Rev Lett 97(9):098302

    Google Scholar 

  16. Radjaï F, Richefeu V (2009) Bond anisotropy and cohesion of wet granular materials. Philos Trans R Soc A 367:5123–5138

    Google Scholar 

  17. Vo T-Trung, Mutabaruka P, Nezamabadi S, Delenne J-Y, Izard E, Pellenq R, Radjai F (2018) Mechanical strength of wet particle agglomerates. Mech Res Commun 92:1–7

    Google Scholar 

  18. Ennis BJ, Tardos G, Pfeffer R (1991) A microlevel-based characterization of granulation phenomena. Powder Technol 65(1):257–272

    Google Scholar 

  19. Talu I, Tardos GI, Khan MI (2000) Computer simulation of wet granulation. Powder Technol 110:59–75

    Google Scholar 

  20. Iveson S, Beathe J, Page N (2002) The dynamic strength of partially saturated powder compacts: the effect of liquid properties. Powder Technol 127:149–161

    Google Scholar 

  21. Saleh K, Guigon P (2007) Coating and encapsulation processes in powder technology. In: Handbook of powder technology, granulation, vol 11. Elsevier, Amsterdam, pp 323–375

  22. Rahmanian N, Ghadiri M, Jia X (2009) Seeded granulation, powder technology 206(1) (2011) 53–62, 9th international symposium on agglomeration and 4th international granulation workshop

  23. Ghadiri M, Salman AD, Hounslow M, Hassanpour A, York DW (2011) Editorial: Special issue—agglomeration. Chem Eng Res Des 89(5):499

    Google Scholar 

  24. Behjani M A, Rahmanian N, bt Abdul Ghani N F, Hassanpour A (2017) An investigation on process of seeded granulation in a continuous drum granulator using DEM. Adv Powder Technol 28(10):2456–2464

    Google Scholar 

  25. Radjai F, Topin V, Richefeu V, Voivret C, Delenne J-Y, Azéma E, El Youssoufi MS (2010) Force transmission in cohesive granular media. In: Goddard JD, Jenkins JT, Giovine P (eds) Mathematical modeling and physical instances of granular flows. AIP, College Park, pp 240–260

    Google Scholar 

  26. Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc Lond 225:49–63

    Google Scholar 

  27. da Cruz F, Emam S, Prochnow M, Roux J-N, Chevoir F (2005) Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys Rev E 72:021309

    Google Scholar 

  28. Hassanpour A, Antony S, Ghadiri M (2006) Effect of size ratio on the behaviour of agglomerates embedded in a bed of particles subjected to shearing: DEM analysis. Chem Eng Sci 62:935–942

    Google Scholar 

  29. Hassanpour A, Antony SJ, Ghadiri M (2007) Modeling of agglomerate behavior under shear deformation: effect of velocity field of a high shear mixer granulator on the structure of agglomerates. Adv Powder Technol 18(6):803–811

    Google Scholar 

  30. GDR-MiDi (2004) On dense granular flows. Eur Phys J E 14:341–365

    Google Scholar 

  31. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441:727–730

    MATH  Google Scholar 

  32. Kamrin K, Koval G (2012) Nonlocal constitutive relation for steady granular flow. Phys Rev Lett 108:178301

    Google Scholar 

  33. Berger N, Azéma E, Douce J-F, Radjai F (2016) Scaling behaviour of cohesive granular flows. Europhys Lett 112:64004

    Google Scholar 

  34. Khamseh S, Roux J-N, Chevoir F (2015) Flow of wet granular materials: a numerical study. Phys Rev E 92:022201

    Google Scholar 

  35. Roy S, Luding S, Weinhart T (2017) A general(ized) local rheology for wet granular materials. New J Phys 19(4):043014

    Google Scholar 

  36. Badetti M, Fall A, Hautemayou D, Chevoir F, Aimedieu P, Rodts S, Roux J-N (2018) Rheology and microstructure of unsaturated wet granular materials: experiments and simulations. J Rheol 62(5):1175–1186

    Google Scholar 

  37. Badetti M, Fall A, Chevoir F, Roux J-N (2018) Shear strength of wet granular materials: macroscopic cohesion and effective stress. Eur Phys J E 41(5):68

    Google Scholar 

  38. Boyer F, Guazzelli E, Pouliquen O (2011) Unifying suspension and granular rheology. Phys Rev Lett 107:18

    Google Scholar 

  39. Trulsson M, Andreotti B, Claudin P (2012) Transition from the viscous to inertial regime in dense suspensions. Phys Rev Lett 109:118305

    Google Scholar 

  40. Amarsid L, Delenne J-Y, Mutabaruka P, Monerie Y, Perales F, Radjai F (2017) Viscoinertial regime of immersed granular flows. Phys Rev E 96:012901

    Google Scholar 

  41. Vo T-Trung, Nezamabadi S, Mutabaruka P, Delenne J-Y, Radjai F (2020) Additive rheology of complex granular flows. Nat Commun 11:1476

    Google Scholar 

  42. Pouliquen O, Cassar C, Jop P, Forterre Y, Nicolas M (2006) Flow of dense granular material: towards simple constitutive laws. J Stat Mech Theory Exp 2006:7020–7020

    MATH  Google Scholar 

  43. Forterre Y, Pouliquen O (2008) Flows of dense granular media. Ann Rev Fluid Mech 40(1):1–24

    MathSciNet  MATH  Google Scholar 

  44. Vo T-T (2020) Rheology and granular texture of visco-inertial simple shear flows. J Rheol 64(5):1133–1145

    Google Scholar 

  45. Lian G, Thornton C, Adams MJ (1998) Discrete particle simulation of agglomerate impact coalescence. Chem Eng Sci 53(19):3381–3391

    Google Scholar 

  46. Štěpánek F, Rajniak P, Mancinelli C, Chern R, Ramachandran R (2009) Distribution and accessibility of binder in wet granules. Powder Technol 189(2):376–384

    Google Scholar 

  47. Richefeu V, Radjai F, Youssoufi MSE (2007) Stress transmission in wet granular materials. Eur Phys J E 21:359–369

    Google Scholar 

  48. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65

    Google Scholar 

  49. Herrmann HJ, Luding S (1998) Modeling granular media with the computer. Contin Mech Thermodyn 10:189–231

    MathSciNet  MATH  Google Scholar 

  50. Thornton C (1999) Quasi-static shear deformation of a soft particle system. Powder Technol 109:179–191

    Google Scholar 

  51. Radjai F, Dubois F (2011) Discrete-element modeling of granular materials. Wiley-ISTE, London

    Google Scholar 

  52. Vo T-Trung, Mutabaruka P, Delenne J-Y, Nezamabadi S, Radjai F (2017) Strength of wet agglomerates of spherical particles: effects of friction and size distribution. EPJ Web Conf 140:08021

    Google Scholar 

  53. Luding S (1998) Collisions and contacts between two particles. In: Herrmann HJ, Hovi J-P, Luding S (eds) Physics of dry granular media—NATO ASI Series E350. Kluwer Academic Publishers, Dordrecht, p 285

    Google Scholar 

  54. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford

    MATH  Google Scholar 

  55. Duran J, Reisinger A, de Gennes P (1999) Sands, powders, and grains: an introduction to the physics of granular materials, partially ordered systems. Springer, New York

    Google Scholar 

  56. Schäfer J, Dippel S, Wolf DE (1996) Force schemes in simulations of granular materials. J Phys I Fr 6:5–20

    Google Scholar 

  57. Dippel S, Batrouni GG, Wolf DE (1997) How transversal fluctuations affect the friction of a particle on a rough incline. Phys Rev E 56:3645–3656

    Google Scholar 

  58. Lian G, Thornton C, Adams M (1993) A theoretical study of the liquid bridge forces between two rigid spherical bodies. J Colloid Interface Sci 161:138–147

    Google Scholar 

  59. Scheel M, Seemann R, Brinkmann M, Michiel MD, Sheppard A, Herminghaus S (2008) Liquid distribution and cohesion in wet granular assemblies beyond the capillary bridge regime. J Phys Condens Matter 20(49):494236

    Google Scholar 

  60. Richefeu V, El Youssoufi M, Radjai F (2006) Shear strength properties of wet granular materials. Phys Rev E 73:051304

    Google Scholar 

  61. Delenne J-Y, Richefeu V, Radjai F (2015) Liquid clustering and capillary pressure in granular media. J Fluid Mech 762:R5

    MathSciNet  Google Scholar 

  62. Than VD, Khamseh S, Tang AMA, Pereira J-M, Chevoir F, Roux J-N (2017) Basic mechanical properties of wet granular materials: a DEM study. J Eng Mech 143(1):C4016001

    Google Scholar 

  63. Mikami T, Kamiya H, Horio M (1998) Numerical simulation of cohesive powder behavior in a fluidized bed. Chem Eng Sci 53(10):1927–1940

    Google Scholar 

  64. Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Martinus Nijhoff Publishers, Leiden

    MATH  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges for useful discussions from (Franck) Farhang Radjai and Patrick Mutabaruka for his original supporting the code. MUSE Clusters at LMGC (University of Montpellier) are acknowledged for running some of the simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Trung Vo.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 54222 KB)

Supplementary material 2 (avi 54220 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, TT. Erosion dynamics of wet particle agglomerates. Comp. Part. Mech. 8, 601–612 (2021). https://doi.org/10.1007/s40571-020-00357-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-020-00357-y

Keywords

Navigation