An accurate nonlocal bonded discrete element method for nonlinear analysis of solids: application to concrete fracture tests

Abstract

We present a numerical procedure for elastic and nonlinear analysis (including fracture situations) of solid materials and structures using the discrete element method. It can be applied to strongly cohesive frictional materials such as concrete and rocks. The method consists on defining nonlocal constitutive equations at the contact interfaces between discrete particles using the information provided by the stress tensor over the neighbor particles. The method can be used with different yield surfaces, and in the paper, it is applied to the analysis of fracture of concrete samples. Good comparison with experimental results is obtained.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. 1.

    Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  2. 2.

    Langston PA, Tüzün U, Heyes DM (1995) Discrete element simulation of granular flow in 2D and 3D hoppers: dependence of discharge rate and wall stress on particle interactions. Chem Eng Sci 50(6):967–987

    Article  Google Scholar 

  3. 3.

    Cleary PW, Sawley ML (2002) DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl Math Model 26(2):89–111

    Article  Google Scholar 

  4. 4.

    Xu BH, Yu AB (1997) Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem Eng Sci 52(16):2785–2809

    Article  Google Scholar 

  5. 5.

    Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77(1):79–87

    Article  Google Scholar 

  6. 6.

    Oñate E, Labra C, Zárate F, Rojek J (2012) Modelling and simulation of the effect of blast loading on structures using an adaptive blending of discrete and finite element methods. In: Escuder-Bueno et al (eds) Risk analysis, dam safety, dam security and critical infrastructure management, vol 53. Taylor & Francis Group, London, pp 365–372

  7. 7.

    Moreno R, Ghadiri M, Antony SJ (2003) Effect of the impact angle on the breakage of agglomerates: a numerical study using DEM. Powder Technol 130(1):132–137

    Article  Google Scholar 

  8. 8.

    Oñate E, Zárate F, Miquel J, Santasusana M, Celigueta MA, Arrufat F, Gandikota R, Valiullin KM, Ring L (2015) A local constitutive model for the discrete element method. Application to geomaterials and concrete. Comput Part Mech 2(2):139–160

    Article  Google Scholar 

  9. 9.

    Brown NJ, Chen JF, Ooi JY (2014) A bond model for DEM simulation of cementitious materials and deformable structures. Granul Matter 16(3):299–311

    Article  Google Scholar 

  10. 10.

    Rojek J, Oñate E, Labra C, Kargl H (2011) Discrete element simulation of rock cutting. Int J Rock Mech Min Sci 48(6):996–1010

    Article  Google Scholar 

  11. 11.

    Oñate E, Rojek J (2004) Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng 193(27):3087–3128

    Article  Google Scholar 

  12. 12.

    Hentz S, Daudeville L, Donzé FV (2004) Identification and validation of a discrete element model for concrete. J Eng Mech 130(6):709–719

    Article  Google Scholar 

  13. 13.

    Labra CA (2012) Advances in the development of the discrete element method for excavation processes. Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona

  14. 14.

    Celigueta MA, Latorre S, Arrufat F, Oñate E (2017) Accurate modelling of the elastic behavior of a continuum with the discrete element method. Comput Mech 60(6):997–1010

    MathSciNet  Article  Google Scholar 

  15. 15.

    Rojek J, Karlis GF, Malinowski LJ, Beer G (2013) Setting up virgin stress conditions in discrete element models. Comput Geotech 48:228–248

    Article  Google Scholar 

  16. 16.

    Rankine WM (1856) On the stability of loose earth. Proc R Soc Lond 185–187

  17. 17.

    Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  18. 18.

    Labuz JF, Zang A (2012) Mohr–Coulomb failure criterion. Rock Mech Rock Eng 45(6):975–979

    Article  Google Scholar 

  19. 19.

    www.cimne.com/dempack. Accessed 20 Aug 2019

  20. 20.

    Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3):253–297

    Article  Google Scholar 

  21. 21.

    Ribó R, Pasenau M, Escolano E, Ronda JS, González LF (1998) GiD reference manual. CIMNE, Barcelona

    Google Scholar 

  22. 22.

    Informe de resultados (2015) Fabricación y caracterización de hormigones H30 y H50. Technical report of the international centre for numerical methods in engineering (CIMNE), IT644. Published in Scipedia

  23. 23.

    http://osp.mans.edu.eg/geotechnical/Ch1C.htm. Accessed 20 Aug 2019

  24. 24.

    ASTM Standard C496 (2002) Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM International, West Conshohocken

Download references

Acknowledgements

The authors thank Prof. Juan Miquel and Dr. Francisco Zárate for their suggestions during the development of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Oñate.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Celigueta, M.A., Latorre, S., Arrufat, F. et al. An accurate nonlocal bonded discrete element method for nonlinear analysis of solids: application to concrete fracture tests. Comp. Part. Mech. 7, 543–553 (2020). https://doi.org/10.1007/s40571-019-00278-5

Download citation

Keywords

  • Discrete element method
  • DEM
  • Concrete
  • Elasticity
  • Nonlinearity
  • Geomaterials
  • Yield surface