A coupled 3D discrete elements/isogeometric method for particle/structure interaction problems

Abstract

To utilize the geometry smoothness of isogeometric analysis for solid media and the effectiveness of the discrete element method for particulate matters, a coupled three-dimensional isogeometric/discrete element method is developed to model the contact interaction between structures and particles. The coupling procedure for handling interactions between isogeometric elements and discrete elements includes global search, local search/resolution and interaction force calculation. Since interaction models for contacting particles and isogeometric elements have significant effects on the contact forces in simulations, several commonly used contact models, including linear, Hertz and quadratic models, are investigated. For a small ball impacting a thick plate example, it is found that the Hertz contact model exhibits the best behavior as the interaction law between a sphere and an isogeometric element in the elastic regime, and no additional correction factor is needed. In addition, an assembly of randomly arranged granular particles impacting a tailor rolled blank is also simulated to further illustrate the applicability of the proposed method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Google Scholar 

  2. 2.

    Munjiza AA, Knight EE, Rougier E (2011) Computational mechanics of discontinua. Wiley, New York

    Google Scholar 

  3. 3.

    Gao W, Liu L, Liao Z, Chen S, Zang M, Tan Y (2019a) Discrete element analysis of the particle mixing performance in a ribbon mixer with a double u-shaped vessel. Granul Matter 21(1):12. https://doi.org/10.1007/s10035-018-0864-4

    Article  Google Scholar 

  4. 4.

    Han K, Peric D, Owen D, Yu J (2000) A combined finite/discrete element simulation of shot peening processes-part II: 3D interaction laws. Eng Comput 17(6):680–702

    MATH  Google Scholar 

  5. 5.

    Munjiza AA (2004) The combined finite-discrete element method. Wiley, London

    Google Scholar 

  6. 6.

    Owen D, Feng Y, de Souza Neto E, Cottrell M, Wang F, Andrade Pires F et al (2004) The modelling of multi-fracturing solids and particulate media. Int J Numer Methods Eng 60(1):317–339

    MATH  Google Scholar 

  7. 7.

    Onate E, Rojek J (2004) Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng 193(27–29):3087–3128

    MATH  Google Scholar 

  8. 8.

    Xiang J, Munjiza A, Latham JP (2009) Finite strain, finite rotation quadratic tetrahedral element for the combined finite-discrete element method. Int J Numer Methods Eng 79(8):946–978

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Zang M, Gao W, Lei Z (2011) A contact algorithm for 3D discrete and finite element contact problems based on penalty function method. Comput Mech 48(5):541–550

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Gao W, Tan Y, Jiang S, Zhang G, Zang M (2016) A virtual-surface contact algorithm for the interaction between FE and spherical DE. Finite Elem Anal Des 108:32–40

    Google Scholar 

  11. 11.

    Zheng Z, Zang M, Chen S, Zeng H (2018) A GPU-based DEM–FEM computational framework for tire-sand interaction simulations. Comput Struct 209:74–92

    Google Scholar 

  12. 12.

    Munjiza A, Knight EE, Rougier E (2015) Large strain finite element method: a practical course. Wiley, New York

    Google Scholar 

  13. 13.

    Dang HK, Meguid MA (2013) An efficient finite-discrete element method for quasi-static nonlinear soil-structure interaction problems. Int J Numer Anal Methods Geomech 37(2):130–149

    Google Scholar 

  14. 14.

    Tran V, Meguid M, Chouinard L (2013) A finite-discrete element framework for the 3D modeling of geogrid-soil interaction under pullout loading conditions. Geotext Geomembr 37:1–9

    Google Scholar 

  15. 15.

    Hu L, Hu G, Fang Z, Zhang Y (2013) A new algorithm for contact detection between spherical particle and triangulated mesh boundary in discrete element method simulations. Int J Numer Methods Eng 94(8):787–804

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Chen H, Zhang Y, Zang M, Hazell PJ (2015) An accurate and robust contact detection algorithm for particle-solid interaction in combined finite-discrete element analysis. Int J Numer Methods Eng 103(8):598–624

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Gao W, Zang M (2014) The simulation of laminated glass beam impact problem by developing fracture model of spherical DEM. Eng Anal Bound Elem 42:2–7

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

    Google Scholar 

  19. 19.

    Santasusana M (2017) Numerical techniques for non-linear analysis of structures combining discrete element and finite element methods. Ph.D. thesis, Polytechnic University of Catalonia

  20. 20.

    Feng Y, Owen D (2004) A 2D polygon/polygon contact model: algorithmic aspects. Eng Comput 21(2/3/4):265–277

    MATH  Google Scholar 

  21. 21.

    Feng YT, Han K, Owen DRJ (2012) Energy-conserving contact interaction models for arbitrarily shaped discrete elements. Comput Methods Appl Mech Eng 205–208:169–177

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Google Scholar 

  24. 24.

    Gao W, Wang J, Yin S, Feng Y (2019b) A coupled 3D isogeometric and discrete element approach for modelling interactions between structures and granular matters. Comput Methods Appl Mech Eng 354:441–463

    MATH  Google Scholar 

  25. 25.

    Cox MG (1972) The numerical evaluation of b-splines. IMA J Appl Math 10(2):134–149

    MathSciNet  MATH  Google Scholar 

  26. 26.

    De Boor C (1972) On calculating with b-splines. J Approx Theory 6(1):50–62

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Temizer I, Wriggers P, Hughes T (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200(9–12):1100–1112

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Di Renzo A, Di Maio FP (2004) Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem Eng Sci 59(3):525–541

    Google Scholar 

  29. 29.

    Escotet-Espinoza MS, Foster CJ, Ierapetritou M (2018) Discrete element modeling (DEM) for mixing of cohesive solids in rotating cylinders. Powder Technol 335:124–136

    Google Scholar 

  30. 30.

    Johnson KL, Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  31. 31.

    Williams JR, Perkins E, Cook B (2004) A contact algorithm for partitioning n arbitrary sized objects. Eng Comput 21(2/3/4):235–248

    MATH  Google Scholar 

  32. 32.

    De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3d large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Kim JY, Youn SK (2012) Isogeometric contact analysis using mortar method. Int J Numer Methods Eng 89(12):1559–1581

    MathSciNet  MATH  Google Scholar 

  34. 34.

    De Lorenzis L, Wriggers P, Hughes TJ (2014) Isogeometric contact: a review. GAMM-Mitteilungen 37(1):85–123

    MathSciNet  MATH  Google Scholar 

  35. 35.

    De Lorenzis L, Temizer I, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87(13):1278–1300

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Dimitri R, De Lorenzis L, Scott M, Wriggers P, Taylor R, Zavarise G (2014) Isogeometric large deformation frictionless contact using T-splines. Comput Methods Appl Mech Eng 269:394–414

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Matzen M, Cichosz T, Bischoff M (2013) A point to segment contact formulation for isogeometric, NURBS based finite elements. Comput Methods Appl Mech Eng 255:27–39

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Moré JJ, Cosnard MY (1979) Numerical solution of nonlinear equations. ACM Trans Math Softw 5(1):64–85

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Brent RP (1973) Some efficient algorithms for solving systems of nonlinear equations. SIAM J Numer Anal 10(2):327–344

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Kopačka J, Gabriel D, Plešek J, Ulbin M (2016) Assessment of methods for computing the closest point projection, penetration, and gap functions in contact searching problems. Int J Numer Methods Eng 105(11):803–833

    MathSciNet  Google Scholar 

  41. 41.

    Spendley W, Hext GR, Himsworth FR (1962) Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics 4(4):441–461

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Zheng Z, Zang M, Chen S, Zhao C (2017) An improved 3D DEM–FEM contact detection algorithm for the interaction simulations between particles and structures. Powder Technol 305:308–322

    Google Scholar 

  43. 43.

    Reed J (1985) Energy losses due to elastic wave propagation during an elastic impact. J Phys D Appl Phys 18(12):2329

    Google Scholar 

  44. 44.

    McLaskey GC, Glaser SD (2010) Hertzian impact: experimental study of the force pulse and resulting stress waves. J Acoust Soc Am 128(3):1087–1096

    Google Scholar 

Download references

Acknowledgements

This work is supported by NNSF of China (Grant Nos. 51878184 and 51404209). The support is greatly acknowledged.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei Gao or Y. T. Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Feng, Y.T. A coupled 3D discrete elements/isogeometric method for particle/structure interaction problems. Comp. Part. Mech. 7, 869–880 (2020). https://doi.org/10.1007/s40571-019-00267-8

Download citation

Keywords

  • Isogeometric analysis
  • Discrete element
  • Coupling
  • Contact interaction model