Skip to main content
Log in

An efficient gradient smoothing meshfree formulation for the fourth-order phase field modeling of brittle fracture

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A reproducing kernel gradient smoothing meshfree formulation is proposed for the fourth-order phase field modeling of brittle fracture. In order to circumvent the complexity and lower efficiency of meshfree gradient computation, a reproducing kernel gradient smoothing formulation is presented with particular reference to quadratic basis functions. Both first- and second-order meshfree smoothed gradients are discussed, in which the first-order smoothed gradients are expressed as a reproducing kernel form and meet the quadratic consistency conditions of Galerkin weak form, and the second-order smoothed gradients are then computed through performing a direct differentiation on the first-order smoothed gradients. It turns out that the resulting second-order smoothed gradients satisfy the standard gradient reproducing conditions of meshfree approximations. Subsequently, the smoothed gradients of meshfree shape functions are employed to discretize the Galerkin weak forms of equilibrium and crack phase field equations, where the numerical integration and smoothed gradient construction are specially emphasized. The tensile–compressive strain decomposition is adopted to prevent compressive crack evolution. Numerical results demonstrate the effectiveness of the proposed gradient smoothing meshfree formulation for the fourth-order phase field modeling of brittle fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342

    MathSciNet  MATH  Google Scholar 

  2. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    MathSciNet  MATH  Google Scholar 

  3. Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91:5–148

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via Γ-convergence. Commun Pure Appl Math 43:999–1036

    MathSciNet  MATH  Google Scholar 

  5. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Meth Eng 83:1273–1311

    MathSciNet  MATH  Google Scholar 

  6. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778

    MathSciNet  MATH  Google Scholar 

  7. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    MathSciNet  MATH  Google Scholar 

  8. Heister T, Wheeler MF, Wick T (2015) A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput Methods Appl Mech Eng 290:466–495

    MathSciNet  MATH  Google Scholar 

  9. Verhoosel CV, de Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Meth Eng 96:43–62

    MathSciNet  MATH  Google Scholar 

  10. Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55:1017–1040

    MathSciNet  MATH  Google Scholar 

  11. Miehe C, Aldakheel F, Teichtmeister S (2017) Phase-field modeling of ductile fracture at finite strains: a robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization. Int J Numer Meth Eng 111:816–863

    MathSciNet  Google Scholar 

  12. Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ (2018) Phase-field formulation for ductile fracture. In: Oñate E, Peric D, de Souza Neto E, Chiumenti M (eds) Advances in computational plasticity. Springer, Cham, pp 45–70

    Google Scholar 

  13. Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118

    MathSciNet  MATH  Google Scholar 

  14. Dittmann M, Aldakheel F, Schulte J, Wriggers P, Hesch C (2018) Variational phase-field formulation of non-linear ductile fracture. Comput Methods Appl Mech Eng 342:71–94

    MathSciNet  Google Scholar 

  15. Wu JY, Nguyen VP, Nguyen TC, Sutula D, Bordas S, Sinaie S (2018) Phase field modeling of fracture. In: Advances in applied mechanics. https://www.researchgate.net/publication/326258921

  16. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, New York

    MATH  Google Scholar 

  17. Zienkiewicz OC, Taylor RL, Zhu JZ (2015) The finite element method: its basis and fundamentals, 7th edn. Elsevier, Singapore

    MATH  Google Scholar 

  18. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37:229–256

    MathSciNet  MATH  Google Scholar 

  19. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Meth Fluids 20:1081–1106

    MathSciNet  MATH  Google Scholar 

  20. Chen JS, Hillman M, Chi SW (2017) Meshfree methods: progress made after 20 years. J Eng Mech ASCE 143:04017001

    Google Scholar 

  21. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    MathSciNet  MATH  Google Scholar 

  22. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester

    MATH  Google Scholar 

  23. Zhou J, Li M (2006) Solving phase field equations using a meshless method. Commun Numer Methods Eng 22:1109–1115

    MathSciNet  MATH  Google Scholar 

  24. Gomez H, Reali A, Sangalli G (2014) Accurate, efficient, and (iso) geometrically flexible collocation methods for phase-field models. J Comput Phys 262:153–171

    MathSciNet  MATH  Google Scholar 

  25. Rosolen A, Peco C, Arroyo M (2013) An adaptive meshfree method for phase-field models of biomembranes. Part I: approximation with maximum-entropy basis functions. J Comput Phys 249:303–319

    MathSciNet  MATH  Google Scholar 

  26. Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M (2014) Phase-field modeling of fracture in linear thin shells. Theor Appl Fract Mech 69:102–109

    Google Scholar 

  27. Amiri F, Millán D, Arroyo M, Silani M, Rabczuk T (2016) Fourth order phase-field model for local max-ent approximants applied to crack propagation. Comput Methods Appl Mech Eng 312:254–275

    MathSciNet  Google Scholar 

  28. Schillinger D, Borden MJ, Stolarski HK (2015) Isogeometric collocation for phase-field fracture models. Comput Methods Appl Mech Eng 284:583–610

    MathSciNet  MATH  Google Scholar 

  29. Ambati M, De Lorenzis L (2016) Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements. Comput Methods Appl Mech Eng 312:351–373

    MathSciNet  Google Scholar 

  30. Kakouris EG, Triantafyllou SP (2018) Material point method for crack propagation in anisotropic media: a phase field approach. Arch Appl Mech 88:287–316

    Google Scholar 

  31. Moutsanidis G, Kamensky D, Chen JS, Bazilevs Y (2018) Hyperbolic phase field modeling of brittle fracture: Part II-immersed IGA-RKPM coupling for air-blast–structure interaction. J Mech Phys Solids 121:114–132

    MathSciNet  Google Scholar 

  32. Lu H, Chen JS (2002) Adaptive Galerkin particle method. Lect Notes Comput Sci Eng 26:251–267

    MathSciNet  MATH  Google Scholar 

  33. You Y, Chen JS, Lu H (2003) Filters, reproducing kernel, and adaptive meshfree method. Comput Mech 31:316–326

    MATH  Google Scholar 

  34. Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2D and 3D. Int J Numer Meth Eng 63:1559–1582

    MathSciNet  MATH  Google Scholar 

  35. Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak form in meshfree methods. Comput Mech 23:219–230

    MathSciNet  MATH  Google Scholar 

  36. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466

    MATH  Google Scholar 

  37. Chen JS, Yoon S, Wu CT (2002) Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 53:2587–2615

    MATH  Google Scholar 

  38. Wang D, Chen JS (2008) A Hermite reproducing kernel approximation for thin plate analysis with sub-domain stabilized conforming integration. Int J Numer Methods Eng 74:368–390

    MATH  Google Scholar 

  39. Wang D, Lin Z (2010) Free vibration analysis of thin plates using Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration. Comput Mech 46:703–719

    MathSciNet  MATH  Google Scholar 

  40. Wang D, Peng H (2011) A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates. Comput Mech 51:1013–1029

    MathSciNet  MATH  Google Scholar 

  41. Wang D, Song C, Peng H (2015) A circumferentially enhanced Hermite reproducing kernel meshfree method for buckling analysis of Kirchhoff-Love cylindrical shells. Int J Struct Stab Dyn 15:1450090

    MathSciNet  MATH  Google Scholar 

  42. Duan Q, Li X, Zhang H, Belytschko T (2012) Second-order accurate derivatives and integration schemes for meshfree methods. Int J Numer Methods Eng 92:399–424

    MathSciNet  MATH  Google Scholar 

  43. Chen JS, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int J Numer Methods Eng 95:387–418

    MathSciNet  MATH  Google Scholar 

  44. Wu CT, Chi SW, Koishi M, Wu Y (2016) Strain gradient stabilization with dual stress points for the meshfree nodal integration method in inelastic analyses. Int J Numer Methods Eng 107:3–30

    MathSciNet  MATH  Google Scholar 

  45. Hillman M, Chen JS (2016) An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Methods Eng 107:603–630

    MathSciNet  MATH  Google Scholar 

  46. Wang D, Wu J (2016) An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Comput Methods Appl Mech Eng 298:485–519

    MathSciNet  MATH  Google Scholar 

  47. Wang D, Wu J (2019) An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Comput Methods Appl Mech Eng 349:628–672

    MathSciNet  Google Scholar 

  48. Ortiz M (1985) A constitutive theory for the inelastic behavior of concrete. Mech Mater 4:67–93

    Google Scholar 

  49. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Methods Appl Mech Eng 139:195–227

    MATH  Google Scholar 

  50. Mesgarnejad A, Bourdin B, Khonsari MM (2015) Validation simulations for the variational approach to fracture. Comput Methods Appl Mech Eng 290:420–437

    MathSciNet  MATH  Google Scholar 

  51. Belytschko T, Lu YY, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51:295–315

    Google Scholar 

  52. Winkler BJ (2001) Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes fur Beton (Doctoral dissertation). Innsbruck University, Innsbruck

    Google Scholar 

Download references

Acknowledgements

The support of this work by the National Natural Science Foundation of China (11772280, 11472233) and the Fundamental Research Funds for the Central Universities of China (20720190120) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest for this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wang, D., Lin, Z. et al. An efficient gradient smoothing meshfree formulation for the fourth-order phase field modeling of brittle fracture. Comp. Part. Mech. 7, 193–207 (2020). https://doi.org/10.1007/s40571-019-00240-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-019-00240-5

Keywords

Navigation