Advertisement

Shift boundary material point method: an image-to-simulation workflow for solids of complex geometries undergoing large deformation

  • Chuanqi Liu
  • WaiChing SunEmail author
Article
  • 87 Downloads

Abstract

We introduce a mathematical framework designed to enable a simple image-to-simulation workflow for solids of complex geometries in the geometrically nonlinear regime. While the material point method is used to circumvent the mesh distortion issues commonly exhibited in Lagrangian meshes, a shifted domain technique originated from Main and Scovazzi (J Comput Phys 372:972–995, 2018) is used to represent the boundary conditions implicitly via a level set or signed distance function. Consequently, this method completely bypasses the need to generate high-quality conformal mesh to represent complex geometries and therefore allows modelers to select the space of the interpolation function without the constraints due to the geometric need. This important simplification enables us to simulate deformation of complex geometries inferred from voxel images. Verification examples on deformable body subjected to finite rotation have shown that the new shifted domain material point method is able to generate frame-indifferent results. Meanwhile, simulations using micro-CT images of a Hostun sand have demonstrated that this method is able to reproduce the quasi-brittle damage mechanisms of single grain without the excessively concentrated nodes commonly displayed in conformal meshes that represent 3D objects with local fine details.

Keywords

Material point method Shift domain Image-based simulations Nonlocal damage Granular materials 

Notes

Acknowledgements

This paper is dedicated to Professor Jiun-Shyan Chen on the occasion of his 60th birthday. This work is supported by the Earth Materials and Processes program from the US Army Research Office under grant contract W911NF-18-2-0306, the Dynamic Materials and Interactions Program from the Air Force Office of Scientific Research under grant contract FA9550-17-1-0169, the nuclear energy university program from Department of Energy under grant contract DE-NE0008534 and the Mechanics of Material program at National Science Foundation under grant contract CMMI-1462760. These supports are gratefully acknowledged. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsors, including the Army Research Laboratory or the US Government. The US Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation herein.

References

  1. 1.
    Abe K, Soga K, Bandara S (2013) Material point method for coupled hydromechanical problems. J Geotech Geoenviron Eng 140(3):04013033CrossRefGoogle Scholar
  2. 2.
    Andersen S, Andersen L (2010) Modelling of landslides with the material-point method. Comput Geosci 14(1):137–147CrossRefzbMATHGoogle Scholar
  3. 3.
    Bardenhagen SG, Brackbill JU, Sulsky D (2000) The material-point method for granular materials. Comput Methods Appl Mech Eng 187(3–4):529–541CrossRefzbMATHGoogle Scholar
  4. 4.
    Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear Finite Elements for Continua and Structures. Wiley, LondonzbMATHGoogle Scholar
  5. 5.
    Charlton TJ, Coombs WM, Augarde CE (2017) iGIMP: an implicit generalised interpolation material point method for large deformations. Comput Struct 190:108–125CrossRefGoogle Scholar
  6. 6.
    Chen J-S, Pan C, Roque CMOL, Wang H-P (1998) A lagrangian reproducing kernel particle method for metal forming analysis. Comput Mech 22(3):289–307CrossRefzbMATHGoogle Scholar
  7. 7.
    Chen J-S, Hillman M, Chi S-W (2017) Meshfree methods: progress made after 20 years. J Eng Mech 143(4):04017001CrossRefGoogle Scholar
  8. 8.
    Cortis M, Coombs W, Augarde C, Brown M, Brennan A, Robinson S (2018) Imposition of essential boundary conditions in the material point method. Int J Numer Methods Eng 113(1):130–152MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cuitino A, Ortiz M (1992) A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. Eng Comput 9(4):437–451CrossRefGoogle Scholar
  10. 10.
    de Borst R, Crisfield MA, Remmers JJC, Verhoosel CV et al (2012) Non-linear finite element analysis of solids and structures. Wiley, LondonCrossRefzbMATHGoogle Scholar
  11. 11.
    de Souza Neto EA, Peric D, Owen DRJ (2011a) Computational methods for plasticity: theory and applications. Wiley, LondonGoogle Scholar
  12. 12.
    de Souza Neto EA, Peric D, Owen DRJ (2011b) Computational methods for plasticity: theory and applications. Wiley, LondonGoogle Scholar
  13. 13.
    Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193(12–14):1257–1275MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gong M (2015) Improving the material point method. Ph.D. dissertation, University of New MexicoGoogle Scholar
  15. 15.
    Guan PC, Chen JS, Wu Y, Teng H, Gaidos J, Hofstetter K, Alsaleh M (2009) Semi-lagrangian reproducing kernel formulation and application to modeling earth moving operations. Mech Mater 41(6):670–683CrossRefGoogle Scholar
  16. 16.
    Guan PC, Chi SW, Chen JS, Slawson TR, Roth MJ (2011) Semi-lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38(12):1033–1047CrossRefGoogle Scholar
  17. 17.
    Guilkey JE, Weiss JA (2003) Implicit time integration for the material point method: quantitative and algorithmic comparisons with the finite element method. Int J Numer Methods Eng 57(9):1323–1338CrossRefzbMATHGoogle Scholar
  18. 18.
    Gupta R, Ando E, Salager S, Wang K, Sun WC (2018a) Open source database for validating and falsifying discrete mechanics models using synthetic granular materials—Part I: experimental tests with particles manufactured by a 3D printerGoogle Scholar
  19. 19.
    Gupta R, Salager S, Wang K, Sun WC (2018b) Open-source support toward validating and falsifying discrete mechanics models using synthetic granular materials—Part I: experimental tests with particles manufactured by a 3D printer. Acta Geotechn, pp 1–15Google Scholar
  20. 20.
    Jirásek M (2007) Nonlocal damage mechanics. Revue européenne de génie civil 11(7–8):993–1021CrossRefGoogle Scholar
  21. 21.
    Kimmel R, Shaked D, Kiryati N, Bruckstein AM (1995) Skeletonization via distance maps and level sets. Comput Vis Image Underst 62(3):382–391CrossRefGoogle Scholar
  22. 22.
    Kuhn MR, Sun WC, Wang Q (2015) Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability. Acta Geotech 10(4):399–419CrossRefGoogle Scholar
  23. 23.
    Kularathna S, Soga K (2017) Implicit formulation of material point method for analysis of incompressible materials. Comput Methods Appl Mech Eng 313:673–686MathSciNetCrossRefGoogle Scholar
  24. 24.
    Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34CrossRefGoogle Scholar
  25. 25.
    Liu C, Sun Q, Yang Y (2017) Multi-scale modelling of granular pile collapse by using material point method and discrete element method. Procedia Eng 175:29–35CrossRefGoogle Scholar
  26. 26.
    Liu Y, Sun WC, Fish J (2016a) Determining material parameters for critical state plasticity models based on multilevel extended digital database. J Appl Mech 83(1):011003CrossRefGoogle Scholar
  27. 27.
    Liu Y, Sun WC, Yuan Z, Fish J (2016b) A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials. Int J Numer Methods Eng 106(2):129–160MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lopes A, Brodlie K (2003) Improving the robustness and accuracy of the marching cubes algorithm for isosurfacing. IEEE Trans Vis Comput Gr 9(1):16–29CrossRefGoogle Scholar
  29. 29.
    Main A, Scovazzi G (2018a) The shifted boundary method for embedded domain computations. Part I: poisson and stokes problems. J Comput Phys 372:972–995MathSciNetCrossRefGoogle Scholar
  30. 30.
    Main A, Scovazzi G (2018b) The shifted boundary method for embedded domain computations. Part II: linear advection–diffusion and incompressible Navier–Stokes equations. J Comput PhysGoogle Scholar
  31. 31.
    Mazars J (1984) Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. THESE DE DOCTEUR ES SCIENCES PRESENTEE A L’UNIVERSITE PIERRE ET MARIE CURIE-PARIS 6Google Scholar
  32. 32.
    Mota A, Sun WC, Ostien JT, Foulk JW, Long KN (2013) Lie-group interpolation and variational recovery for internal variables. Comput Mech 52(6):1281–1299MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Mueller R, Gross D, Maugin GA (2004) Use of material forces in adaptive finite element methods. Comput Mech 33(6):421–434CrossRefzbMATHGoogle Scholar
  34. 34.
    Na S, Sun W (2017) Computational thermo-hydro-mechanics for multiphase freezing and thawing porous media in the finite deformation range. Comput Methods Appl Mech Eng 318:667–700MathSciNetCrossRefGoogle Scholar
  35. 35.
    Nair A, Roy S (2012) Implicit time integration in the generalized interpolation material point method for finite deformation hyperelasticity. Mech Adv Mater Struct 19(6):465–473CrossRefGoogle Scholar
  36. 36.
    Nitsche J (1971) Über ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36(1):9–15.  https://doi.org/10.1007/BF02995904 ISSN 1865-8784MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Ortiz M (2002) Course notes for computational solid mechanicsGoogle Scholar
  38. 38.
    Papadrakakis M (1981) A method for the automatic evaluation of the dynamic relaxation parameters. Comput Methods Appl Mech Eng 25(1):35–48MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Qinami A, Bryant EC, Sun WC, Kaliske M (2019) Circumventing mesh bias by r- and h-adaptive techniques for variational eigen-fracture. Int J FractGoogle Scholar
  40. 40.
    Schillinger D, Ruess M (2015) The finite cell method: a review in the context of higher-order structural analysis of cad and image-based geometric models. Arch Comput Methods Eng 22(3):391–455MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Sirjani A, Cross GR (1991) On representation of a shape’s skeleton. Pattern Recognit Lett 12(3):149–154CrossRefGoogle Scholar
  42. 42.
    Song T, Main A, Scovazzi G, Ricchiuto M (2018) The shifted boundary method for hyperbolic systems: embedded domain computations of linear waves and shallow water flows. J Comput Phys 369:45–79MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Sulsky D, Kaul A (2004) Implicit dynamics in the material-point method. Comput Methods Appl Mech Eng 193(12–14):1137–1170MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Sulsky D, Gong M (2016) Improving the material-point method. In: Innovative numerical approaches for multi-field and multi-scale problems. Springer, Berlin, 217–240Google Scholar
  45. 45.
    Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Sulsky D, Zhou S-J, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87(1–2):236–252CrossRefzbMATHGoogle Scholar
  47. 47.
    Sulsky D, Schreyer H, Peterson K, Kwok Ron, Coon M (2007) Using the material-point method to model sea ice dynamics. J Geophys Res: Oceans 112(C2)Google Scholar
  48. 48.
    Sun W (2015) A stabilized finite element formulation for monolithic thermo-hydro-mechanical simulations at finite strain. Int J Numer Methods Eng 103(11):798–839MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Sun W, Andrade JE, Rudnicki JW (2011a) Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability. Int J Numer Methods Eng 88(12):1260–1279MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Sun W, Andrade JE, Rudnicki JW, Eichhubl P (2011b) Connecting microstructural attributes and permeability from 3D tomographic images of in situ shear-enhanced compaction bands using multiscale computations. Geophys Res Lett 38(10)Google Scholar
  51. 51.
    Sun WC, Wong T (2018) Prediction of permeability and formation factor of sandstone with hybrid lattice boltzmann/finite element simulation on microtomographic images. Int J Rock Mech Min Sci 106:269–277CrossRefGoogle Scholar
  52. 52.
    Sun WC, Kuhn MR, Rudnicki JW (2013a) A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band. Acta Geotechnica 8(5):465–480CrossRefGoogle Scholar
  53. 53.
    Sun WC, Ostien JT, Salinger AG (2013b) A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain. Int J Numer Anal Methods Geomech 37(16):2755–2788Google Scholar
  54. 54.
    Truster TJ, Nassif O (2017) Variational projection methods for gradient crystal plasticity using lie algebras. Int J Numer Methods Eng 110(4):303–332MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Wang B, Vardon PJ, Hicks MA, Chen Z (2016) Development of an implicit material point method for geotechnical applications. Comput Geotech 71:159–167CrossRefGoogle Scholar
  56. 56.
    Wang K, Sun W (2016) A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain. Comput Methods Appl Mech Eng 304:546–583MathSciNetCrossRefGoogle Scholar
  57. 57.
    Wang K, Sun WC (2018) A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning. Comput Methods Appl Mech Eng 334:337–380MathSciNetCrossRefGoogle Scholar
  58. 58.
    Wang K, Sun WC (2019) Meta-modeling game for deriving theory-consistent, microstructure-based traction-separation laws via deep reinforcement learning. Comput Methods Appl Mech Eng 346:216–241MathSciNetCrossRefGoogle Scholar
  59. 59.
    Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinzbMATHGoogle Scholar
  60. 60.
    Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput Methods Appl Mech Eng 101(1–3):207–224MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© OWZ 2019

Authors and Affiliations

  1. 1.Department of Civil Engineering and Engineering MechanicsColumbia UniversityNew YorkUSA

Personalised recommendations