Advertisement

Computational Particle Mechanics

, Volume 6, Issue 2, pp 213–226 | Cite as

Implementation of an unresolved stabilised FEM–DEM model to solve immersed granular flows

  • Matthieu ConstantEmail author
  • Frédéric Dubois
  • Jonathan Lambrechts
  • Vincent Legat
Article
  • 134 Downloads

Abstract

This paper presents an unresolved computational fluid dynamic–discrete element method (CFD–DEM) model for the simulation of flows mixing fluid and grains. The grains trajectories are solved at a fine scale using a discrete element method. It provides the velocities and the trajectories of the grains with an accuracy that is needed to describe microscopic phenomena like clogging in pipe happening in these flows. Solved at a coarse scale using the finite element method, the fluid motion is deduced from a mean continuous representation of the fluid phase giving computational performance and keeping variables evolutions that are of interest for a lot of simulation processes. The key point of this method lays in the coupling of the two different representation scales. An empirical drag formula for monodisperse granular media parametrises the transfer of momentum between the phases. Applying this model to the well-known problem of suspension drops provides validation and insight in this kind of methodology. Simulations in which inertia is non-negligible are achieved to prove the generality and adaptability of the unresolved CFD–DEM model compared to other models.

Keywords

Multiscale model Multiphase flow Suspension drops Finite element Discrete element Simulations 

Notes

Acknowledgements

Matthieu Constant is a Research Fellow with the Belgium Fund for Research in Industry and Agriculture (FRIA).

Funding

This study was funded by the F.R.S.-FNRS through a FRIA Grant (29627518).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Abade G, Cunha F (2007) Computer simulation of particle aggregates during sedimentation. Comput Methods Appl Mech Eng 196(45):4597–4612CrossRefzbMATHGoogle Scholar
  2. 2.
    Adachi K, Kiriyama S, Yoshioka N (1978) The behavior of a swarm of particles moving in a viscous fluid. Chem Eng Sci 733:115–121CrossRefGoogle Scholar
  3. 3.
    Alart P, Curnier A (1991) A mixed formulation for frictional contact problems Prone to Newton like solution methods. Comput Methods Appl Mech Eng 92:353–375.  https://doi.org/10.1016/0045-7825(91)90022-X MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Anderson T, Jackson R (1968) A fluid mechanical description of fluidized beds: stability of the uniform state of fluidization. I&EC Fundam 7:12–21CrossRefGoogle Scholar
  5. 5.
    Babuska I (1973) The finite element method with lagrangian multipliers. Numer Math 20(3):179–192MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  7. 7.
    Batchelor GK (1972) Sedimentation in a dilute dispersion of spheres. J Fluid Mech 52(2):245–268.  https://doi.org/10.1017/S0022112072001399 CrossRefzbMATHGoogle Scholar
  8. 8.
    Bosse T, Kleiser L, Härtel C, Meiburg E (2005) Numerical simulation of finite Reynolds number suspension drops settling under gravity. Phys Fluids 17(3):037101CrossRefzbMATHGoogle Scholar
  9. 9.
    Bouillard J, Gidaspow D, Lyczkowski R (1991) Hydrodynamics of fluidization: fast-bubble simulation in a two-dimensional fluidized bed. Powder Technol 66(2):107–118CrossRefGoogle Scholar
  10. 10.
    Brezzi F, Douglas J (1988) Stabilized mixed method for Stokes problem. Numer Math 53:225–235MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brezzi F, Pitkaranta J (1984) On the stabilization of the finite element approximations of the Stokes equations. In: Hackbush W (ed) Efficient solution of elliptic systems, vol 10. Vieweg, Braunschweig, pp 11–19CrossRefGoogle Scholar
  12. 12.
    Brinkman HC (1947) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res A1:27–34zbMATHGoogle Scholar
  13. 13.
    Bülow F, Nirschl H, Dörfler W (2015) On the settling behaviour of polydisperse particle clouds in viscous fluids. Eur J Mech B/Fluids 50:19–26MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chu K, Wang B, Yu A, Vince A (2009) CFD–DEM modelling of multiphase flow in dense medium cyclones. Powder Technol 193(3):235–247.  https://doi.org/10.1016/j.powtec.2009.03.015 (Special issue: Discrete element methods: the 4th international conference on discrete element methodsthe 4th international conference on discrete element methods, Brisbane, August 2007)CrossRefGoogle Scholar
  15. 15.
    Chu K, Yu A (2008) Numerical simulation of complex particle-fluid flows. Powder Technol 179(3):104–114.  https://doi.org/10.1016/j.powtec.2007.06.017 (WCPT5Papers presented at the 5th world conference of particle technology (WCPT5), Orlando, Florida, April 23–27 20065th world conference of particle technology (WCPT5))CrossRefGoogle Scholar
  16. 16.
    Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65CrossRefGoogle Scholar
  17. 17.
    DallaValle JM, Klemin A (1943) Micromeritics: the technology of the particles. Pitman Publishing Corporation, New YorkCrossRefGoogle Scholar
  18. 18.
    Di Renzo A, Di Maio FP (2007) Homogeneous and bubbling fluidization regimes in dem-cfd simulations: hydrodynamic stability of gas and liquid fluidized beds. Chem Eng Sci 62(1–2):116–130CrossRefGoogle Scholar
  19. 19.
    Dubois F, Acary V, Jean M (2018) The contact dynamics method: a nonsmooth story. Comptes Rendus Mécanique 346(3):247–262.  https://doi.org/10.1016/j.crme.2017.12.009 CrossRefGoogle Scholar
  20. 20.
    Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94Google Scholar
  21. 21.
    Felice RD (1994) The voidage function for fluid–particle interaction systems. Int J Multiph Flow 20(1):153–159CrossRefzbMATHGoogle Scholar
  22. 22.
    Feng Y, Yu A (2004) Assessment of model formulations in the discrete particle simulation of gas–solid flow. Ind Eng Chem Res 43(26):8378–8390CrossRefGoogle Scholar
  23. 23.
    Galindo-Torres S (2013) A coupled discrete element lattice boltzmann method for the simulation of fluid–solid interaction with particles of general shapes. Comput Methods Appl Mech Eng 265:107–119MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Geuzaine C, Remacle JF (2009) Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gidaspow D (2012) Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic Press, LondonzbMATHGoogle Scholar
  26. 26.
    Gupta P (2015) Verification and validation of a DEM-CFD model and multiscale modelling of cohesive fluidization regimes. Ph.D. thesis, The University of EdinburghGoogle Scholar
  27. 27.
    Ho T, Phan-Thien N, Khoo B (2016) Destabilization of clouds of monodisperse and polydisperse particles falling in a quiescent and viscous fluid. Phys Fluids 28(6):063305CrossRefGoogle Scholar
  28. 28.
    Hoomans BPB, Kuipers JAM, Briels WJ, van Swaaij WPM (1996) Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chem Eng Sci 51(1):99–118CrossRefGoogle Scholar
  29. 29.
    Hu HH (1996) Direct simulation of flows of solid–liquid mixture. Int J Multiph Flow 22(2):335–352MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hughes TJR, Franca LP (1986) A new finite element formulation for computational fluid dynamics: V. Circumeventing the Babuska–Brezzi condition: a stable petrov-galerking formulation of the stokes problem accomodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85–99CrossRefzbMATHGoogle Scholar
  31. 31.
    Jackson R (1997) Locally averaged equations of motion for a mixture of identical spherical particles and a newtonian fluid. Chem Eng Sci 52(15):2457–2469.  https://doi.org/10.1016/S0009-2509(97)00065-1 (Mathematical modelling of chemical and biochemical processes)CrossRefGoogle Scholar
  32. 32.
    Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177(3–4):235–257MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Jean M, Moreau J (1992) Unilaterality and dry friction in the dynamics of rigid body collections. In: Proceedings of contact mechanics international symposium, vol 1, pp 31–48Google Scholar
  34. 34.
    Jourdan F, Alart P, Jean M (1998) A Gauss–Seidel like algorithm to solve frictional contact problems. Comput Methods Appl Mech Eng 155:31–47.  https://doi.org/10.1016/S0045-7825(97)00137-0 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kafui K, Thornton C, Adams M (2002) Discrete particle-continuum fluid modelling of gas–solid fluidised beds. Chem Eng Sci 57(13):2395–2410CrossRefGoogle Scholar
  36. 36.
    Ladyshenskaya OA (1969) The mathematical theory of viscous incompressible flow. Gordon and Breach, New YorkGoogle Scholar
  37. 37.
    Lamb H (1932) Hydrodynamics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  38. 38.
    Landau LD, Lifshitz EM (1987) Course of theoretical physics. In: Fluid mechanics, vol 6, 2nd edn. Pergamon Press, pp. 336–343Google Scholar
  39. 39.
    Li J, Kuipers JAM (2003) Gas–particle interactions in dense gas-fluidized beds. Chem Eng Sci 58(3–6):711–718CrossRefGoogle Scholar
  40. 40.
    Lin Y, Tan JH, Phan-Thien N, Khoo BC (2017) Settling of particle-suspension drops at low to moderate Reynolds numbers. Eur J Mech B/Fluids 61:72–76MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Machu G, Meile W, Nitsche LC, Schaflinger U (2001) Coalescence, torus formation and break-up of sedimenting clouds: experiments and computer simulations. J Fluid Mech 447:299–336CrossRefzbMATHGoogle Scholar
  42. 42.
    McNamara S, Young WR (1992) Inelastic collapse and clumping in a one-dimensional granular medium. Phys Fluids A Fluid Dyn 4(3):496–504CrossRefGoogle Scholar
  43. 43.
    Metzger B, Nicolas M, Guazzelli E (2007) Falling clouds of particles in viscous fluids. J Fluid Mech 580:283–301CrossRefzbMATHGoogle Scholar
  44. 44.
    Mylyk A, Meile W, Brenn G, Ekiel-Jeżewska M (2011) Break-up of suspension drops settling under gravity in a viscous fluid close to a vertical wall. Phys Fluids 23(6):063302CrossRefGoogle Scholar
  45. 45.
    Nguyen NQ, Ladd A (2002) Lubrication corrections for Lattice–Boltzmann simulations of particle suspensions. Phys Rev E 66(4):046708CrossRefGoogle Scholar
  46. 46.
    Nitsche JM, Batchelor GK (1997) Break-up of a falling cloud containing dispersed particles. J Fluid Mech 340:161–175MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Patankar S (1980) Numerical heat transfer and fluid flow. CRC Press, Boca RatonzbMATHGoogle Scholar
  48. 48.
    Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Pignatel F, Nicolas M, Guazzelli E (2011) A falling cloud of particles at a small but finite Reynolds number. J Fluid Mech 671:34–51CrossRefzbMATHGoogle Scholar
  50. 50.
    Pritchett J, Blake T, Garg S (1978) A numerical model of gas fluidized beds. In: AIChE symposium series, vol 74, p 134Google Scholar
  51. 51.
    Renouf M, Dubois F, Alart P (2004) A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media. J Comput Appl Math 168:375–382.  https://doi.org/10.1016/j.cam.2003.05.019 (Selected papers from the second international conference on advanced computational methods in engineering (ACOMEN 2002))MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Richardson J, Zaki W (1954) The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem Eng Sci 3(2):65–73.  https://doi.org/10.1016/0009-2509(54)85015-9 CrossRefGoogle Scholar
  53. 53.
    Rzadkiewicz SA, Mariotti C, Heinrich P (1996) Modelling of submarines landslides and generated water waves. Phys Chem Earth 21(1–2):1–12Google Scholar
  54. 54.
    Sanchez PJ, Sonzogni VE, Huespe AE (2008) Study of a stabilized mixed finite element with emphasis on its numerical performance for strain localization problems. Int J Numer Methods Biomed Eng 24(4):297–320MathSciNetzbMATHGoogle Scholar
  55. 55.
    Subramanian G, Koch DL (2008) Evolution of clusters of sedimenting low-Reynolds-number particles with oseen interactions. J Fluid Mech 603:63–100MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Taghipour F, Ellis N, Wong C (2005) Experimental and computational study of gas–solid fluidized bed hydrodynamics. Chem Eng Sci 60(24):6857–6867CrossRefGoogle Scholar
  57. 57.
    Tezduyar TE (1991) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Tezduyar TE, Mittal S, Ray S, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95(2):221–242CrossRefzbMATHGoogle Scholar
  59. 59.
    Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two dimensional fluidized bed. Powder Technol 77(1):79–87CrossRefGoogle Scholar
  60. 60.
    Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71(3):239–250.  https://doi.org/10.1016/0032-5910(92)88030-L CrossRefGoogle Scholar
  61. 61.
    van Wachem B, Almstedt A (2003) Methods for multiphase computational fluid dynamics. Chem Eng J 96(13):81–98.  https://doi.org/10.1016/j.cej.2003.08.025 (Festschrift Prof. Cor M. van den Bleek)CrossRefGoogle Scholar
  62. 62.
    Wen CY, Yu HY (1966) Chemical engineering progress symposium series. Mech Fluid 62:100–111Google Scholar
  63. 63.
    Xu BH, Yu AB (1997) Numerical simulation of the gas–solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem Eng Sci 52(16):2785–2809CrossRefGoogle Scholar
  64. 64.
    Yu A, Xu B (2003) Particle-scale modelling of gas–solid flow in fluidisation. J Chem Technol Biotechnol 78(2–3):111–121CrossRefGoogle Scholar
  65. 65.
    Zhang J, Fan LS, Zhu C, Pfeffer R, Qi D (1999) Dynamic behaviour of collision of elastic spheres in viscous fluids. Powder Technol 106(1–2):98–109CrossRefGoogle Scholar
  66. 66.
    Zhang P, Galindo-Torres S, Tang H, Jin G, Scheuermann A, Li L (2017) An efficient discrete element lattice Boltzmann model for simulation of particle–fluid, particle–particle interactions. Comput Fluids 147:63–71MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Zhong W, Yu A, Zhou G, Xie J, Zhang H (2016) CFD simulation of dense particulate reaction system: approaches, recent advances and applications. Chem Eng Sci 140:16–43.  https://doi.org/10.1016/j.ces.2015.09.035 CrossRefGoogle Scholar
  68. 68.
    Zhu HP, Zhou ZY, Yang RY, Yu AB (2007) Discrete particle simulation of particulate system: theoretical developments. Chem Eng Sci 62(13):3378–3396CrossRefGoogle Scholar

Copyright information

© OWZ 2018

Authors and Affiliations

  1. 1.Institute of Mechanics, Materials and Civil Engineering, Applied Mechanics and MathematicsUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.LMGC, Univ. Montpellier, CNRSMontpellierFrance
  3. 3.MIST, Univ. Montpellier, CNRS, IRSNMontpellierFrance

Personalised recommendations