Skip to main content

Table 1 Physical properties and simulation parameters

From: Voidage correction algorithm for unresolved Euler–Lagrange simulations

Parameter Studied range
Bed geometry
\(H_\mathrm{bed}\left( \mathrm{m} \right) \) \(72d_p\)\(144d_p \)
\(L_\mathrm{bed} \left( \mathrm{m} \right) \) \(24d_p\)\(96d_p \)
\(w_\mathrm{bed} \left( \mathrm{m} \right) \) \(24d_p\)\(96d_p \)
Particle properties
\(\rho _\mathrm{s} \left( {\mathrm{kg}/\mathrm{m}^{3}} \right] \) 1000
\(d_p \left( \mathrm{m} \right) \) \(2\times 10^{-4}-2\times 10^{-2}\)
Contact model Hertzian, inelastic, with friction and tangential history
\(Y\left( {\mathrm{N}/\mathrm{m}^{2}} \right) \) \(2\times 10^{5}\)
\(\nu \) (–) 0.45
\(\mu _{c,p}\) (–) 1
\(e_{pp}\) (–) 1
\(\mu _{c,w}\) (–) 0.5
\(e_{wp}\) (–) 0.3
\(T_{p_0 } \left( \mathrm{K} \right) \) 330
\(C_{p,p}(\mathrm{J}/\mathrm{K})\) 385
Gas phase properties
\(\rho _g(\hbox {kg}/\hbox {m}^{3})\) 1.188
\(\mu _g \left( {\hbox {Pa}\,\hbox {s}} \right) \) \(1.79\times 10^{-5}\)
\(T_{g_0} \left( \mathrm{K} \right) \) 335
\(T_{g_i} \left( \mathrm{K} \right) \) 335
\(u\left( {\hbox {m}/\hbox {s}} \right) \) 0.1–1
Wall boundary condition Slip
Simulation parameters
\(\Delta t_\mathrm{CFD} (\hbox {s})\) \(1.25\times 10^{-3}-2\times 10^{-2}\)
\(\Delta t_\mathrm{DEM} (\hbox {s})\) \(5\times 10^{-5}-1\times 10^{-4}\)
\(t_{\sim }(\hbox {s})\) 10
Simulation parameters
Interpolation scheme Linear
Discretization scheme Gauss-limited linear second order