Skip to main content
Log in

Parallel scalability and efficiency of vortex particle method for aeroelasticity analysis of bluff bodies

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an analysis of the scalability and efficiency of a simulation framework based on the vortex particle method. The code is applied for the numerical aerodynamic analysis of line-like structures. The numerical code runs on multicore CPU and GPU architectures using OpenCL framework. The focus of this paper is the analysis of the parallel efficiency and scalability of the method being applied to an engineering test case, specifically the aeroelastic response of a long-span bridge girder at the construction stage. The target is to assess the optimal configuration and the required computer architecture, such that it becomes feasible to efficiently utilise the method within the computational resources available for a regular engineering office. The simulations and the scalability analysis are performed on a regular gaming type computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abbas T, Morgenthal G (2013) Quantification of the effects of turbulence in wind on the vortex-induced vibrations. In: IABSE symposium report, international association for bridge and structural engineering, vol 101

    Article  Google Scholar 

  2. Abbas T, Morgenthal G (2016) Framework for sensitivity and uncertainty quantification in the flutter assessment of bridges. Probab Eng Mech 43:91–105

    Article  Google Scholar 

  3. Agishtein ME, Migdal AA (1989) Dynamics of vortex surfaces in three dimensions: theory and simulations. Physica D 40(1):91–118

    Article  MathSciNet  Google Scholar 

  4. Appel AW (1985) An efficient program for many-body simulation. SIAM J Sci Stat Comput 6(1):85–103

    Article  MathSciNet  Google Scholar 

  5. Barba L, Leonard A, Allen C (2005) Advances in viscous vortex methodsmeshless spatial adaption based on radial basis function interpolation. Int J Numer Methods Fluids 47(5):387–421

    Article  Google Scholar 

  6. Beale JT, Majda A (1985) High order accurate vortex methods with explicit velocity kernels. J Comput Phys 58(2):188–208

    Article  Google Scholar 

  7. Bhatia H, Norgard G, Pascucci V, Bremer PT (2013) The helmholtz-hodge decomposition—a survey. IEEE Trans Visual Comput Graph 19(8):1386–1404

    Article  Google Scholar 

  8. Chang CC (1988) Random vortex methods for the Navier–Stokes equations. J Comput Phys 76(2):281–300

    Article  MathSciNet  Google Scholar 

  9. Chawdhury S, Morgenthal G (2016) Flow reproduction using vortex particle methods for simulating wake buffeting response of bluff structures. J Wind Eng Ind Aerodyn 151:122–136

    Article  Google Scholar 

  10. Chorin AJ (1973) Numerical study of slightly viscous flow. J Fluid Mech 57(4):785–796

    Article  MathSciNet  Google Scholar 

  11. Cocle R, Winckelmans G, Daeninck G (2008) Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations. J Comput Phys 227(21):9091–9120

    Article  MathSciNet  Google Scholar 

  12. Cottet GH, Koumoutsakos PD (2000) Vortex methods: theory and practice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  13. COWI (2013) Mersey gateway bridge. Input for ibdas and wind analysis. Technical note. Tech. rep., COWI, Denmark

  14. Eldredge JD (2007) Numerical simulation of the fluid dynamics of 2d rigid body motion with the vortex particle method. J Comput Phys 221(2):626–648

    Article  MathSciNet  Google Scholar 

  15. Gander MJ, Kwok F (2012) Chladni figures and the tacoma bridge: motivating pde eigenvalue problems via vibrating plates. SIAM Rev 54(3):573–596

    Article  MathSciNet  Google Scholar 

  16. Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(2):325–348

    Article  MathSciNet  Google Scholar 

  17. Hall WS (1994) Boundary element method. Springer, Dordrecht

    Book  Google Scholar 

  18. Helmholtz H (1867) Uber integrale der hydrodynamischen gleichungen welche den wirbelbewegungen entsprechen, crelles j., 55 (1858), 25–55. English translation, on integrals of the hydrodynamical equations which express vortex motion. Philos Mag 33:485–512

    Article  Google Scholar 

  19. Hill MD (1990) What is scalability? ACM SIGARCH Comput Architect News 18(4):18–21

    Article  Google Scholar 

  20. HonoréWalther J, Larsen A (1997) Two dimensional discrete vortex method for application to bluff body aerodynamics. J Wind Eng Ind Aerodyn 67:183–193

    Article  Google Scholar 

  21. Kavrakov I, Ibrahim K, Morgenthal G (2016) Comparative study of semi-analytical and numerical methods for aerodynamic analysis of long-span bridges. In: 8th International colloquium on bluff body aerodynamics and applications. Northeastern University, Boston, Massachusetts, USA, 7–11 June, 2016

  22. Kuwahara K, Takami H (1973) Numerical studies of two-dimensional vortex motion by a system of point vortices. J Phys Soc Jpn 34(1):247–253

    Article  Google Scholar 

  23. Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34

    Article  Google Scholar 

  24. Limited FN (2014) Mersey gateway project. Wind tunnel testing interpretative report, Technical Report. Flint & Neill Limited, London

  25. Moore D, Saffman P (1972) The motion of a vortex filament with axial flow. Philos Trans R Soc Lond A Math Phys Eng Sci 272(1226):403–429

    Article  Google Scholar 

  26. Morgenthal G (2002) Aerodynamic analysis of structures using high-resolution vortex particle methods. Ph.D. thesis, University of Cambridge

  27. Morgenthal G, Walther JH (2007) An immersed interface method for the vortex-in-cell algorithm. Comput Struct 85(11):712–726

    Article  Google Scholar 

  28. Morgenthal G, Corriols AS, Bendig B (2014) A gpu-accelerated pseudo-3d vortex method for aerodynamic analysis. J Wind Eng Ind Aerodyn 125:69–80

    Article  Google Scholar 

  29. Ploumhans P, Winckelmans G (2000) Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry. J Comput Phys 165(2):354–406

    Article  MathSciNet  Google Scholar 

  30. Rasmussen JT, Hejlesen MM, Larsen A, Walther JH (2010) Discrete vortex method simulations of the aerodynamic admittance in bridge aerodynamics. J Wind Eng Ind Aerodyn 98(12):754–766

    Article  Google Scholar 

  31. Rosenhead L (1931) The formation of vortices from a surface of discontinuity. Proc R Soc Lond Ser A Contain Pap Math Phys Character 134(823):170–192

    Article  Google Scholar 

  32. Rossinelli D, Hejazialhosseini B, van Rees W, Gazzola M, Bergdorf M, Koumoutsakos P (2015) Mrag-i2d: multi-resolution adapted grids for remeshed vortex methods on multicore architectures. J Comput Phys 288:1–18

    Article  MathSciNet  Google Scholar 

  33. Sanders P, Ludorf Nielsen L, Wood H, Banks J (2014) Design and construction of the mersey gateway bridge. In: IABSE symposium report, international association for bridge and structural engineering, vol.102, pp 1956–1963

    Article  Google Scholar 

  34. Smith P, Stansby P (1988) Impulsively started flow around a circular cylinder by the vortex method. J Fluid Mech 194:45–77

    Article  Google Scholar 

  35. SOFiSTiK A (2012) Sofistik analysis programs version 2012. SOFiSTiK AG, Oberschleißheim

  36. Speck R (2011) Generalized algebraic kernels and multipole expansions for massively parallel vortex particle methods, vol 7. Forschungszentrum, Jülich

    Google Scholar 

  37. Taylor I, Vezza M (2001) Application of a discrete vortex method for the analysis of suspension bridge deck sections. Wind Struct 4(4):333–352

    Article  Google Scholar 

  38. Tolba KI, Morgenthal G (2017) Pseudo three-dimensional simulation of aeroelastic response to turbulent wind using vortex particle methods. J Fluids Struct 72:1–24

    Article  Google Scholar 

  39. TESolution (2014) Mersey gateway project. wind tunnel test. Tech. Rep., TESolution Ltd, South Korea

  40. Warren MS, Salmon JK (1993) A parallel hashed oct-tree n-body algorithm. In: Proceedings of the 1993 ACM/IEEE conference on supercomputing. ACM, pp 12–21

  41. Xu YL (2013) Wind effects on cable-supported bridges. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgements

The work has been supported in part by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Ibrahim Tolba.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolba, K.I., Morgenthal, G. Parallel scalability and efficiency of vortex particle method for aeroelasticity analysis of bluff bodies. Comp. Part. Mech. 5, 493–506 (2018). https://doi.org/10.1007/s40571-018-0185-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-018-0185-8

Keywords

Navigation