Skip to main content

Pulse fracture simulation in shale rock reservoirs: DEM and FEM–DEM approaches

Abstract

In this paper we analyze the capabilities of two numerical techniques based on DEM and FEM–DEM approaches for the simulation of fracture in shale rock caused by a pulse of pressure. We have studied the evolution of fracture in several fracture scenarios related to the initial stress state in the soil or the pressure pulse peak. Fracture length and type of failure have been taken as reference for validating the models. The results obtained show a good approximation to FEM results from the literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. 1.

    Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics part I: formulation. Comput Methods Appl Mech Eng 199:2559–2570

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics part II: strain localization. Comput Methods Appl Mech Eng 199:2571–2589

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Cervera M, Chiumenti M, Codina R (2011) Mesh objective modelling of cracks using continuous linear strain and displacements interpolations. Int J Numer Methods Eng 87:962–987

    Article  MATH  Google Scholar 

  4. 4.

    Hernandez JA, Oliver J, Cante JC, Weyler R (2011) Numerical modeling of crack formation in powder forming processes. Int J Solids Struct 48(2):292–316

    Article  MATH  Google Scholar 

  5. 5.

    Johnson PR, Petrinic N, Süli E (2005) Element-splitting for simulation of fracture in 3D Solid continua. In: VIII International conference on computational plasticity, Barcelona

  6. 6.

    Oliver J, Caicedo M, Roubin E, Huespe AE, Hernandez JA (2015) Continuum approach to computational multiscale modeling of propagating fracture. Comput Methods Appl Mech Eng 294:384–427

    MathSciNet  Article  Google Scholar 

  7. 7.

    Oliver J, Huespe AE, Dias IF (2012) Strain localization, strong discontinuities and material fracture: matches and mismatches. Comput Methods Appl Mech Eng 241–244:323–336

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Donzé F, Richelieu F, Magnier S (2009) Advances in discrete element method applied to soil, rock and concrete mechanics in state of the art of geotechnical engineering. Electro J Geotech Eng 8:1–44

    Google Scholar 

  9. 9.

    Hsiegh Y-M, Li H-H, Huang T-H, Jeng F-S (2008) Interpretations on how the macroscopic mechanical behavior of sandstone affected by macroscopic properties revealed by bonded-particle model. Eng Geol 99(1):1–10

    Article  Google Scholar 

  10. 10.

    Huang H (1999) Discrete element modelling of tool-rock interaction. Ph.D thesis, University of Minnesota

  11. 11.

    Labra C, Rojek J, Oñate E, Zarate F (2008) Advances in discrete element modelling of underground excavations. Acta Geotech 3(4):317–322

    Article  Google Scholar 

  12. 12.

    Munjiza A (2004) The combined finite-discrete element method. Wiley, New York

    Book  MATH  Google Scholar 

  13. 13.

    Oñate E, Zarate F, Miquel J, Santasusana M, Celigueta MA, Arrufat F, Gankikota R, Valiullin K, Ring L (2015) A local constitutive model for the discrete element method. Application to geomaterials and concrete. Comput Part Mech 2:139–160

    Article  Google Scholar 

  14. 14.

    Oñate T, Rojek J (2004) Combination of dicrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng 193:3087–3128

    Article  MATH  Google Scholar 

  15. 15.

    Potyondy D, Cundall P (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364 (Rock Mechanics Results from the Underground Research Laboratory, Canada)

    Article  Google Scholar 

  16. 16.

    Rojek J, Labra C, Su O, Oñate E (2012) Comparative study of different micromechanical parameters. Int J Solids Struct 49(13):1497–1517

    Article  Google Scholar 

  17. 17.

    Rojek J, Oñate E (2007) Multiscale analysis using a coupled discrete/finite element model. Interact Multiscale Mech 1(1):1–31

    Article  Google Scholar 

  18. 18.

    Tran V-T, Donzé F-V, Marin P (2011) A discrete element model of concrete under high triaxial loading. Cem Concr Compos 33(9):936–948

    Article  Google Scholar 

  19. 19.

    Ubach PA, Arrufat F, Ring L, Gandikota R, Zarate F, Oñate E (2016) Application of an enhanced discrete element method to oil and gas drilling processes. Comp Part Mech 3(1):29–41

    Article  Google Scholar 

  20. 20.

    Katagiri S (2003) Development of FEM–DEM combined method for fracture analysis of a continuous media. Memoirs of the Graduate School of Science and Technology, Kobe University, Kobe, pp 65–79

    Google Scholar 

  21. 21.

    Zarate F, Oñate E (2015) A simple FEM–DEM technique for fracture prediction in materials and structures. Comput Part Mech 2(3):301–314

    Article  Google Scholar 

  22. 22.

    Santasusana M, Irazábal J, Oñate E, Carbonell JM (2016) The double hierarchy method. A parallel 3D contact method for the interaction of spherical particles with rigid FE boundaries using the DEM. Comp Part Mech 3:407–428

    Article  Google Scholar 

  23. 23.

    Zárate F, Gonzalez JM, Miquel J, Löhner R, Oñate E (2017) A coupled fluid FEM-DEM technique for predicting blasting operations in tunnels. Underground Space (submitted)

  24. 24.

    Reza Safari M, Gandikota R, Mutlu U, Ji M, Glaville J, Abass H (2013) Pulsed fracturing in shale reservoirs: geomechanical aspects, ductile–brittle transition and field implications. In: Unconventional resources technology conference (URTeC), Denver, CO, USA, 12–14 Aug 2013, pp 448–461

  25. 25.

    Reza Safari M, Huang J, Mutlu U. (2013) Ductile to brittle transition, generation of complex fracture networks and engineering implications. In: Applied geoscience conference, Houston (Texas)

  26. 26.

    Cundall PA, Strack ODL (1979) A discrete numerical method for granular assemblies. Geotechnique 2:47–65

    Article  Google Scholar 

  27. 27.

    GiD the personal pre and postprocessor. Version 13.0 (2017). www.gidhome.com

  28. 28.

    Labra C, Oñate E (2009) High-density sphere packing for discrete element method simulations. Commun Numer Methods Eng 25(7):837–849

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has been carried out with the financial support from Advanced grant projects COMDESMAT and ICEBREAKER of the European Research Council and the BALAMED project (BIA2012-39172) of MINECO (Spain). The support of CIMNE for making available the DEMPack code (www.cimne.com/dempack) and the GiD pre-postprocessor (www.gidhome.com) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eugenio Oñate.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González, J.M., Zárate, F. & Oñate, E. Pulse fracture simulation in shale rock reservoirs: DEM and FEM–DEM approaches. Comp. Part. Mech. 5, 355–373 (2018). https://doi.org/10.1007/s40571-017-0174-3

Download citation

Keywords

  • Discrete element method
  • Finite element method
  • FEM–DEM
  • Pulse fracture
  • Shale rock