Skip to main content
Log in

Systemic characterization and evaluation of particle packings as initial sets for discrete element simulations

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A methodology that comprises several characterization properties for particle packings is proposed in this paper. The methodology takes into account factors such as dimension and shape of particles, space occupation, homogeneity, connectivity and isotropy, among others. This classification and integration of several properties allows to carry out a characterization process to systemically evaluate the particle packings in order to guarantee the quality of the initial meshes in discrete element simulations, in both the micro- and the macroscales. Several new properties were created, and improvements in existing ones are presented. Properties from other disciplines were adapted to be used in the evaluation of particle systems. The methodology allows to easily characterize media at the level of the microscale (continuous geometries—steels, rocks microstructures, etc., and discrete geometries) and the macroscale. A global, systemic and integral system for characterizing and evaluating particle sets, based on fuzzy logic, is presented. Such system allows researchers to have a unique evaluation criterion based on the aim of their research. Examples of applications are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Stoyan D, Kendall WS, Mecke J (1995) Stochastic geometry and its applications. Wiley, Chichester

    MATH  Google Scholar 

  2. O’Sullivan C (2011) Particulate discrete element modelling: a geomechanics perspective, vol 4. Applied geotechnics. Spon Press, London

    Google Scholar 

  3. He D, Ekere NN, Cai L (2001) New statistic techniques for structure evaluation of particle packing. Mater Sci Eng A 298:209–215

    Article  Google Scholar 

  4. Stoyan D (2002) Random systems of hard particles: models and statistics. Chin J Stereol Image Anal 7(1):1–13

  5. Craig RF (2004) Soil mechanics. Taylor & Francis, London

    Google Scholar 

  6. Bezrukov A, Stoyan D, Bargiel M (2001) Spatial statistics for simulated packings of spheres. Image Anal Steorol 20:203–206

    Article  Google Scholar 

  7. Bagi K (2005) An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul Matter 7:31–43. https://doi.org/10.1007/s10035-004-0187-5

    Article  MATH  Google Scholar 

  8. Torquato S, Stillinger FH (2002) Controlling the Short-range order and packing densities of many-particle systems. J Phys Chem B 106(33):8354–8359. https://doi.org/10.1021/jp0208687

    Article  Google Scholar 

  9. Torquato S, Truskett TM, Debenedetti PG (2000) Is random close packing of spheres well defined? Phys Rev Lett 84(10):2064–2067

  10. Reboul N, Vincens E, Cambou B (2008) A statistical analysis of void size distribution in a simulated narrowly graded packing of spheres. Granul Matter 10:457–468. https://doi.org/10.1007/s10035-008-0111-5

    Article  MATH  Google Scholar 

  11. Atkinson J (2007) The mechanics of soils and foundations. Taylor and Francis, London

    Google Scholar 

  12. Rothenburg L, Bathurst RJ (1989) Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39(4):601–614. https://doi.org/10.1680/geot.1989.39.4.601

    Article  Google Scholar 

  13. Kuhn MR (1999) Structured deformation in granular materials. Mech Mater 31(6):407–429. https://doi.org/10.1016/S0167-6636(99)00010-1

    Article  Google Scholar 

  14. Kuhn MR (2003) Heterogeneity and patterning in the quasi-static behavior of granular materials. Granul Matter 4(4):155–166. https://doi.org/10.1007/s10035-002-0118-2

    Article  MATH  Google Scholar 

  15. Thornton C (2000) Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1):43–53. https://doi.org/10.1680/geot.2000.50.1.43

    Article  Google Scholar 

  16. Jiang MJ, Konrad JM, Leroueil S (2003) An efficient technique for generating homogeneous specimens for DEM studies. Comput Geotech 30(7):579–597. https://doi.org/10.1016/S0266-352X(03)00064-8

    Article  Google Scholar 

  17. Field W (1963) Towards the statical definition of a granular mass. In: Paper presented at the 4th Australia and New Zealand conference on soil mechanics

  18. Mitchell J (1993) Fundamentals of soil behavior, 2nd edn. Wiley, New York

    Google Scholar 

  19. Kuwano R, Jardine RJ (2002) On the applicability of cross-anisotropic elasticity to granular materials at very small strains. Géotechnique 52(10):727–749. https://doi.org/10.1680/geot.2002.52.10.727

    Article  Google Scholar 

  20. Oda M, Nemat-Nasser S, Konishi J (1985) Stress-induced anisotropy in granular masses. Soils Found 25(3):85–97

    Article  Google Scholar 

  21. Li X, Li X-S (2009) Micro–macro quantification of the internal structure of granular materials. J Eng Mech 135(7):641–656. https://doi.org/10.1061/(ASCE)0733-9399

    Article  Google Scholar 

  22. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11(5):357–372. https://doi.org/10.1016/0022-5096(63)90036-X

    Article  MATH  Google Scholar 

  23. Cui L, O’Sullivan C (2003) Analysis of a triangulation based approach for specimen generation for discrete element simulations. Granul Matter 5(3):135–145. https://doi.org/10.1007/s10035-003-0145-7

    Article  MATH  Google Scholar 

  24. Cui L, O’Sullivan C (2006) Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus. Géotechnique 56(7):455–468. https://doi.org/10.1680/geot.2006.56.7.455

    Article  Google Scholar 

  25. Oda M, Konishi J, Nemat-Nasser S (1980) Some experimentally based fundamental results on the mechanical behaviour of granular materials. Géotechnique 30(4):479–495. https://doi.org/10.1680/geot.1980.30.4.479

    Article  Google Scholar 

  26. Rothenburg L, Kruyt NP (2004) Critical state and evolution of coordination number in simulated granular materials. Int J Solids Struct 41(21):5763–5774. https://doi.org/10.1016/j.ijsolstr.2004.06.001

    Article  MATH  Google Scholar 

  27. Hasan A, Alshibli KA (2010) Experimental assessment of 3D particle-to-particle interaction within sheared sand using synchrotron microtomography. Géotechnique 60(5):369–379. https://doi.org/10.1680/geot.2010.60.5.369

    Article  Google Scholar 

  28. O’Hern CS, Silbert LE, Liu AJ, Nagel SR (2003) Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys Rev E 68(1):011306

    Article  Google Scholar 

  29. Satake M (1982) Fabric tensor in granular materials. In: Paper presented at the IUTAM symposium on deformation and failure of granular materials

  30. Ng T-T (2004) Macro- and micro-behaviors of granular materials under different sample preparation methods and stress paths. Int J Solids Struct 41(21):5871–5884. https://doi.org/10.1016/j.ijsolstr.2004.05.050

    Article  MATH  Google Scholar 

  31. Scheidegger A (1965) On the statistics of the orientation of bedding planes, grain axes and similar sedimentological data. US Geol Surv Prof Pap 525:164–167

    Google Scholar 

  32. Ken-Ichi K (1984) Distribution of directional data and fabric tensors. Int J Eng Sci 22(2):149–164. https://doi.org/10.1016/0020-7225(84)90090-9

    Article  MathSciNet  MATH  Google Scholar 

  33. Oda M (1999) Fabric tensor and its geometrical meaning. In: Oda M, Iwashita K (eds) Mechanics of granular materials. Balkema, Rotterdam, pp 19–27

    Google Scholar 

  34. Vanoni V (1975) Sedimentation engineering. American Society of Civil Engineers Printers, New York

    Google Scholar 

  35. Müller G (1967) Sedimentary petrology: methods in sedimentary petrology. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  36. Trask PD (1930) Mechanical analysis of sediments by centrifuge. Econ Geol 25:581–599

    Article  Google Scholar 

  37. Inman DL (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 22:125–145

    Google Scholar 

  38. Folk RL, Ward WC (1957) Brazos River bar, a study in the significance of grain size parameters. J Sediment Petrol 27:3–37

    Article  Google Scholar 

  39. de Mahiques MM (2016) Sediment sorting. In: Kennish MJ (ed) Encyclopedia of estuaries. Springer Netherlands, Dordrecht, pp 560–561. https://doi.org/10.1007/978-94-017-8801-4_348

  40. Sowers GB, Sowers GF (1972) Introducción a la mecánica de suelos y cimentaciones. Limusa-Wiley S. A., México D.F

    Google Scholar 

  41. Saucier R (2000) Computer generation of statistical distributions. Storming Media, 122 pp. https://books.google.com.cu/books?id=tbBZAAAACAAJ

  42. Chatfield C (1989) The analysis of time series. An introduction. Chapman and Hall, London

    MATH  Google Scholar 

  43. Thornton C, Liu L (2000) DEM simulations of uniaxial compression and decompression. In: Kolymbas D, Fellin W (eds) International workshop on compaction of soils, granulates and powders. pp 251–261

  44. Kuhn MR (1999) Structured deformation in granular materials. Mech Mater 31:407–429

    Article  Google Scholar 

  45. Rothenburg L, Bathurst R (1989) Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39(4):601–614

    Article  Google Scholar 

  46. Bierwisch C et al (2009) Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling. J Mech Phys Solids 57:10–31

    Article  MATH  Google Scholar 

  47. Kruyt N, Rothenburg L (2009) Plasticity of granular materials: a structural mechanics view. In: Paper presented at the 6th international conference on micromechanics of granular media, Golden, Colorado, 13–7 July 2009

  48. Agresti A (2002) Categorical data analysis. Second, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  49. Hollander M, Wolfe DA (1973) Nonparametric statistical methods. John Wiley & Sons, New York

    MATH  Google Scholar 

  50. Pavan M, Todeschini R (2008) Scientific data ranking methods: theory and applications. Elsevier Science, Amsterdam

    Google Scholar 

  51. McNeill FM, Thro E (1994) Fuzzy logic: a practical approach. Academic Press, 312 pp. https://www.elsevier.com/books/fuzzy-logic/mcneill/978-0-12-485965-4

  52. Sivanandam SN, Deepa SN, Sumathi S (2007) Introduction to fuzzy logic using MATLAB. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  53. Han K, Feng YT, Owen DRJ (2005) Sphere packing with a geometric based compression algorithm. Powder Technol 155(1):33–41

    Article  Google Scholar 

  54. Roselló Valera R, Pérez Morales I, Vanmaercke S, Recarey Morfa C, Argüelles Cortés L, Díaz-Guzmán Casañas H (2015) Modified algorithm for generating high volume fraction sphere packings. 2(2):161–172. https://doi.org/10.1007/s40571-015-0045-8

Download references

Acknowledgements

The authors are deeply grateful to the valuable funding, resources and support of the following institutions and people:

\(\bullet \) Brazilian agency for the improvement of higher education personnel (CAPES). Project No. 208/13 and National Post-doctorate Program.

\(\bullet \) International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain.

\(\bullet \) Professor Manuel Llanes Abeijón, for his valuable revision of the use of English in the original version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irvin Pablo Pérez Morales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morfa, C.R., Cortés, L.A., Farias, M.M.d. et al. Systemic characterization and evaluation of particle packings as initial sets for discrete element simulations. Comp. Part. Mech. 5, 319–334 (2018). https://doi.org/10.1007/s40571-017-0171-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-017-0171-6

Keywords

Navigation