Computational Particle Mechanics

, Volume 5, Issue 2, pp 227–238 | Cite as

Electrical percolation threshold of magnetostrictive inclusions in a piezoelectric matrix composite as a function of relative particle size

  • Ever J. Barbero
  • Antoine Joseph BedardJr.


Magnetoelectric composites can be produced by embedding magnetostrictive particles in a piezoelectric matrix derived from a piezoelectric powder precursor. Ferrite magnetostrictive particles, if allowed to percolate, can short the potential difference generated in the piezoelectric phase. Modeling a magnetoelectric composite as an aggregate of bi-disperse hard shells, molecular dynamics was used to explore relationships among relative particle size, particle affinity, and electrical percolation with the goal of maximizing the percolation threshold. It is found that two factors raise the percolation threshold, namely the relative size of magnetostrictive to piezoelectric particles, and the affinity between the magnetostrictive and piezoelectric particles.


Magnetostrictive Piezoelectric Magnetoelectric Percolation Granular molecular dynamics LAMMPS Particle segregation Particle size Polydisperse hard shells Leonard–Jones 



The authors wish to acknowledge use of the West Virginia Super Computing System (Spruce Knob), funded by the National Science Foundation EPSCoR Research Infrastructure Improvement Cooperative Agreement No. 1003907, without access to which the study would not have been possible.


  1. 1.
    Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature Publishing Group, Department of Materials Science, University of Cambridge, CambridgeGoogle Scholar
  2. 2.
    Grossinger R, Duong GV, Sato-Turtlli R (2008) The physics of magnetoelectric composites. J Magn Magn Mater 320:1972–1977CrossRefGoogle Scholar
  3. 3.
    Ma J, Hu J, Li Z, Nan C-W (2011) Recent progress in multiferric magnetoelectric composites: from bulk to thin films. Adv Mater 23:1062–1087CrossRefGoogle Scholar
  4. 4.
    Bichurin M, Petrov V, Priya S, Bhalla A (2012) Editorial multiferric magnetoelectric composites and their applications. Adv Cond Matter Phys 12:129794Google Scholar
  5. 5.
    Brito VLO, Cunha SA, Lemos LV, Nunes CB (2012) Magnetic properties of liquid-phase sintered \(\text{CoFe}_{2}\text{O}_{4}\) for application in magneoelastic and magnetoelectric transducers. Sensors 12:10086–10096CrossRefGoogle Scholar
  6. 6.
    Chu Y-H, Martin LW, Holcomb MB, Gajek M, Han S-J, He Q, Balke N, Yang C-H, Lee D, Hu W, Zhan Q, Yang P-L, Fraile-Rodriquez A, Scholl A, Wang SX, Ramesh R (2008) Electric-field control of local ferromagnetism using magnetoelectric multiferric. Department of Materials Science and Engineering, University of California, Berkeley, CA. doi: 10.1038/nmat2184 Google Scholar
  7. 7.
    Nan C-W, Song M-IS, Veichland D, Srinivasan G (2008) Multiferric magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 3:1Google Scholar
  8. 8.
    Ortega N, Kumar A, Scott JF, Katlyar RS (2015) Multifunctional magnetostatic materials for device applications. J Phys Cond Matter 27:504002CrossRefGoogle Scholar
  9. 9.
    Sharif NSAB (2015) Synthesis and characterization of lead zirconate titanate \((\text{Pb[Zr}_{0.52}\text{Ti}_{0.48}]\text{O}_{3})\) properties via high energy planetary ball milling. Ph.D. dissertation, Manufacturing Engineering, University Malaysia PahangGoogle Scholar
  10. 10.
    Randall CA, Kim N, Kucera J-P, Cao W, Shrout TR (1998) Intrinsic and extrinsic size effects in fine grained morphotropic-phase-boundary lead zirconate titanete ceramics. J Am Ceram 81(3):677–688CrossRefGoogle Scholar
  11. 11.
    Nan C-W, Shen Y, Ma J (2010) Physical properties of composites near percolation. Annu Rev Mater Res 40:131–151CrossRefGoogle Scholar
  12. 12.
    Bunde A, Deiterich W (2000) Percolation in composites. J Electroceram 5(2):81–92CrossRefGoogle Scholar
  13. 13.
    Muchenik TI, Barbero EJ (2014) Micromechanics modeling of magnetoelectric composites. In: Composites and advanced materials, CAMX Conference Proceedings, Orlando FL, Oct 13–16Google Scholar
  14. 14.
    Muchenik TI, Barbero EJ (2015) Charge, voltage and work-conversion formulas for magnetoelectric laminated composites. Smart Mater Struct. doi: 10.1088/0964-1726/24/2/025039 Google Scholar
  15. 15.
    Muchenik TI, Barbero EJ (2016) Magnetoelectric composites. In: Barbero EJ (ed) Multifunctional composites. Create Space Independent Publishing, CharlestonGoogle Scholar
  16. 16.
    Muchenik TI, Barbero EJ (2016) Prediction of extrinsic charge, voltage, and work-conversion factors for laminated magnetoelectric composites. Smart Matter Struct. doi: 10.1088/0964-1726/25/1/015006 Google Scholar
  17. 17.
    Scher H, Zallen R (1970) Critical density in percolation processes. J Chem Phys 53:3759CrossRefGoogle Scholar
  18. 18.
    Bolintineanu DS, Grest GS, Lechman JB, Fierce F, Plimpton SJ, Schunk PR (2014) Particle dynamics modeling methods for colloid suspensions. Comp Part Mech 1:321–356CrossRefGoogle Scholar
  19. 19.
    Staron L, Phillips JC (2015) How large grains increase bulk friction in bi-disperse granular chute flows. Comp Part Mech. doi: 10.1007/s40571-015-0068-1 Google Scholar
  20. 20.
    Saitoh K, Magnanimo V, Luding S (2016) The effects of microscopic friction and size distributions on conditional probability distributions in soft particle packings. Comp Part Mech. doi: 10.1007/s40571-016-0138-z Google Scholar
  21. 21.
    Rapaport DC (2014) Molecular dynamics simulation: a tool for exploration and discovery using simple models. J Phys Condens Matter 26:503104–503121CrossRefGoogle Scholar
  22. 22.
    Kusy RP (1977) Influence of particle size ratio on the continuity of aggregates. J Appl Phys 48:5301. doi: 10.1063/1.323560 CrossRefGoogle Scholar
  23. 23.
    Deepa KS, Nisha SK, Parameswaran P, Sebastian MT, James J (2009) Effect of conductivity on filer on the percolation threshold of composites. Appl Phys Lett 94:142902CrossRefGoogle Scholar
  24. 24.
    Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRefzbMATHGoogle Scholar
  25. 25.
    Carrera D (2007) Quantum tunneling in chemical reactions. MacMillan, LondonGoogle Scholar
  26. 26.
    Beloborodov IS, Lopatin AV, Vinokur VM (2005) Coulomb effects and hopping transport in granular metals. Rev B 72:125121CrossRefGoogle Scholar
  27. 27.
    Hill RT, Mock JJ, Wolter SD, Jokest NM, Smith DR, Chilkoti A (2012) Plasmon ruler with angstrom length resolution. ACS Nano 6(10):9237–9246CrossRefGoogle Scholar
  28. 28.
    Kadkhodazadeh S, Wagner JB, Kneipp H, Kneipp Katrin (2013) Coexistance of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps. Appl Phys Lett 103:083103CrossRefGoogle Scholar
  29. 29.
    Scholl JA, Garcia-Etxarri A, Koh AL, Dionne JA (2013) Observations of quantum tunneling between two plasmonic nanoparticles. Nano Lett 13:564–569CrossRefGoogle Scholar
  30. 30.
    Zhang J, Shklovskii BI (2004) Density of states and conductivity of a granular metal or array of quantum dots. Phys Rev B 70:153317Google Scholar
  31. 31.
    Li J, Kim J-K (2007) Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatlets. Compos Sci Technol 67:2114–2120CrossRefGoogle Scholar
  32. 32.
  33. 33.
    Popov V (2010) Contact mechanics and friction. Springer, Berlin. doi: 10.1007/978-3-642-10803-7_5 CrossRefzbMATHGoogle Scholar
  34. 34.
    Foffi G, Goetz W, Sciortino F, Tartaglia P, Voigtmann T (2003) Mixing effects for the structural relaxation in binary hard-sphere liquids. Phys Rev Lett 91(8):085701CrossRefGoogle Scholar
  35. 35.
    Ottino JM, Khakhar DV (2000) Mixing and segregation of granular materials. Annu Rev Fluid Mech 32:55–91MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Parisi G, Zamponi F (2010) Mean-field theory of hard sphere glasses and jamming. Rev Mod Phys 82:789CrossRefGoogle Scholar
  37. 37.
    Brouwers HJH (2006) Particle-size distribution and packing fraction of geometric random packing. Phys Rev E 74:1–14Google Scholar
  38. 38.
    Kansal AR, Torquato S, Stillinger FH (2002) Computer generation of dense polydisperse sphere packing. J Chem Phys 117(18):8212–8218CrossRefGoogle Scholar
  39. 39.
    Scott GD, Kilgour DM (1969) The density of random close packing of spheres. Br J Appl Phys 2(2):863–866Google Scholar
  40. 40.
    GRunlan JC, Gerberich WW, Francis LF (2001) Lowering the percolation threshold of conductive composites using particulate polymer microstructure. J Appl Polym Sci 80:69–705CrossRefGoogle Scholar
  41. 41.
    Hasanabadi HM, Wilhelm M, Rodrigue D (2014) A rheological criterion to determine the percolation threshold in polymer nano-composites. Rheol Acta 5:869–882CrossRefGoogle Scholar
  42. 42.
    Stauffer D, Aharmony A (1994) Introduction to percolation theory, 2nd edn. Taylor and Francis, LondonGoogle Scholar
  43. 43.
    Eisberg R, Resnick R (1985) Quantum mechanics of atoms molecules solids nuclei and particles, 2nd edn. Wiley, LondonGoogle Scholar
  44. 44.
    Kruse RL (1989) Programming with data structures. Prentice Hall, PrenticeGoogle Scholar
  45. 45.
    Nappini S, Magnano Elena (2015) Surface charge and coating of \(\text{CeFe}_{2}\text{O}_{4}\) nanoparticles evidence of preserved magnetic and electronic properties. J Phys Chem C 119:25529–25541CrossRefGoogle Scholar
  46. 46.
    Vaart K, Gajjar P, Epely-Chauvin G, Andreini N, Gray JMNT, Ancey C (2015) An underlying asymmetry within particle-size segregation. Phys Rev Lett 114:238001CrossRefGoogle Scholar
  47. 47.
    Royall CP, Williams SR, Ohtsuka T, Tanaka J (2008) Direct observation of a local structural mechanism for dynamic arrest. Nat Mater. doi: 10.1038/nmat2219 Google Scholar
  48. 48.
    Schilling T, Dorosz S, Radu M, Mathue M, Jungblut S, Binder K (2013) Mixtures of qnsiotropic and spherical colloids: phase behavior, confinement, percolation phenomena and kinetics. Eur Phys J Spec Top 222:3039–3052CrossRefGoogle Scholar
  49. 49.
    Suarez M-A, Kem N, Kob W (2009) Out-of-equilibrium dynamics of a fractal model gel. J Chem Phys 130:194904CrossRefGoogle Scholar
  50. 50.
    Amirjanov A, Sobolev K (2008) Optimization of a computer simulation model for packing of concrete aggregates. Part Sci Technol 26(4):380–395CrossRefGoogle Scholar
  51. 51.
    Puertas AM, Fuchs M, Cates ME (2004) Dynamical heterogeneities close to a colloidal gel. J Chem Phys 121(6):2813–2822CrossRefGoogle Scholar
  52. 52.
    Zaccarelli E, Buldyrev SV, La Nave E, Morene AJ, Saika-Voivod I, Sciortino F, Tartaglia P (2005) Model for reversible colloidal gelation. Phys Rev Lett 94:218301CrossRefGoogle Scholar
  53. 53.
    Rohr GS (2001) Structure and bonding in crystalline materials. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  54. 54.
    Rojek J, Nosewicz S, Jursak K, Chmielewski M, Bochenek K, Pietrzak K (2015) Discrete element simulation of powder compaction in cold uniaxial pressing with low pressure. Comp Part Mech 3:513–524CrossRefGoogle Scholar
  55. 55.
    Nakagawa M, Moss JL, Altobelli SA (1999) MRI measurements and granular dynamics simulation of segregation of granular mixture. In: Proceedings of fourth microgravity fluid physics and transport phenomena (NASA/CP-199902085526/SUPPL1)Google Scholar

Copyright information

© OWZ 2017

Authors and Affiliations

  1. 1.West Virginia UniversityMorgantownUSA

Personalised recommendations