Advertisement

Computational Particle Mechanics

, Volume 5, Issue 2, pp 213–226 | Cite as

Virtual modeling of polycrystalline structures of materials using particle packing algorithms and Laguerre cells

  • Carlos Recarey Morfa
  • Márcio Muniz de Farias
  • Irvin Pablo Pérez Morales
  • Eugenio Oñate Ibañez de Navarra
  • Roberto Roselló Valera
Article

Abstract

The influence of the microstructural heterogeneities is an important topic in the study of materials. In the context of computational mechanics, it is therefore necessary to generate virtual materials that are statistically equivalent to the microstructure under study, and to connect that geometrical description to the different numerical methods. Herein, the authors present a procedure to model continuous solid polycrystalline materials, such as rocks and metals, preserving their representative statistical grain size distribution. The first phase of the procedure consists of segmenting an image of the material into adjacent polyhedral grains representing the individual crystals. This segmentation allows estimating the grain size distribution, which is used as the input for an advancing front sphere packing algorithm. Finally, Laguerre diagrams are calculated from the obtained sphere packings. The centers of the spheres give the centers of the Laguerre cells, and their radii determine the cells’ weights. The cell sizes in the obtained Laguerre diagrams have a distribution similar to that of the grains obtained from the image segmentation. That is why those diagrams are a convenient model of the original crystalline structure. The above-outlined procedure has been used to model real polycrystalline metallic materials. The main difference with previously existing methods lies in the use of a better particle packing algorithm.

Keywords

Polycrystals Particle packing Laguerre diagram Rock and metallic materials microstructure Nanostructures 

Notes

Acknowledgements

The authors are deeply grateful to the funds, resources and support of the following organizations and people: Brazilian agency for the improvement of higher education personnel (CAPES). Project No. 208/13 and National Postdoctorate Program. International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain. Professor Manuel Llanes Abeijón, for his valuable revision of the use of English in the original version of this paper.

References

  1. 1.
    Fish J, Suvorov A, Belsky V (1997) Automated adaptive multilevel solver. Comput Methods Appl Mech Eng 149(1–4):267–287CrossRefzbMATHGoogle Scholar
  2. 2.
    Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modeling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54(8):1235–1260CrossRefzbMATHGoogle Scholar
  3. 3.
    Matsui K, Terada K, Yuge K (2004) Two-scale finite element analysis of heterogeneous solids with periodic microstructures. Comput Struct 82(7–8):593–606CrossRefGoogle Scholar
  4. 4.
    Zhu HX, Thorpe SM, Windle AH (2006) The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs. Int J Solids Struct 43:1061–1078CrossRefzbMATHGoogle Scholar
  5. 5.
    Chen X, Papathanasiou T (2008) The transverse permeability of disordered fiber arrays: a statistical correlation in terms of the mean nearest interfiber spacing. Transp Porous Media 71:233–251CrossRefGoogle Scholar
  6. 6.
    Bernacki M, Resk H, Coupez T, Logé RE (2009) Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework. Model Simul Mater Sci Eng 17:064006CrossRefGoogle Scholar
  7. 7.
    Resk H, Delannay L, Bernacki M, Coupez T, Logé RE (2009) Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations. Model Simul Mater Sci Eng 17(7):075012CrossRefGoogle Scholar
  8. 8.
    Sun Z, Logé R, Bernacki M (2010) 3d finite element model of semi-solid permeability in an equiaxed granular structure. Comput Mater Sci 49(1):158–170CrossRefGoogle Scholar
  9. 9.
    Benabbou A, Borouchaki H, Laug P, Lu J (2009) Geometrical modeling of granular structures in two and three dimensions. Application to nanostructures. Int J Numer Methods Eng 80(4):425–454. doi: 10.1002/nme.2644 CrossRefzbMATHGoogle Scholar
  10. 10.
    Hitti MK (2011) ) Direct numerical simulation of complex representative volume elements (RVEs): generation, resolution and homogenization. École nationale supérieure des mines de Paris, ParisGoogle Scholar
  11. 11.
    Benabbou A, Borouchaki H, Laug P, Lu J (2010) Numerical modeling of nanostructured materials. Finite Elem Anal Des 46(1–2):165–180. doi: 10.1016/j.finel.2009.06.030 CrossRefGoogle Scholar
  12. 12.
    Brahme A, Alvi MH, Saylor D, Fridy J, Rollett AD (2006) 3d reconstruction of microstructure in a commercial purity aluminum. Scr Mater 55:75–80CrossRefGoogle Scholar
  13. 13.
    Rollett AD, Saylor D, Frid J, El-Dasher BS, Barhme A, Lee S-B, Cornwell C, Noack R (2004) Modelling polycrystalline microstructures in 3d. In: Paper presented at the proceeding conference numiform, ColumbusGoogle Scholar
  14. 14.
    Bagi K (2005) An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul Matter 7:31–43. doi: 10.1007/s10035-004-0187-5 CrossRefzbMATHGoogle Scholar
  15. 15.
    Shi Y, Zhang Y (2008) Simulation of random packing of spherical particles with different size distributions. Appl Phys A 92:621–626CrossRefGoogle Scholar
  16. 16.
    Zhou J, Zhang Y, Chen JK (2009) Numerical simulation of random packing of spherical particles for powder-based additive manufacturing. J Manuf Sci Eng 131(3):031004CrossRefGoogle Scholar
  17. 17.
    Roselló Valera R, Pérez Morales I, Vanmaercke S, Recarey Morfa C, Argüelles Cortés L, Díaz-Guzmán Casañas H (2015) Modified algorithm for generating high volume fraction sphere packings. Comput Part Mech 2(2):161–172. doi: 10.1007/s40571-015-0045-8 CrossRefGoogle Scholar
  18. 18.
    Löhner R, Oñate E (2004) A general advancing front technique for filling space with arbitrary objects. Int J Numer Methods Eng 61(12):1977–1991. doi: 10.1002/nme.1068 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Löhner R, Oñate E (2010) Advancing front techniques for filling space with arbitrary separated objects. Finite Elem Anal Des 46(1–2):140–151. doi: 10.1016/j.finel.2009.06.032 CrossRefGoogle Scholar
  20. 20.
    Han K, Feng YT, Owen DRJ (2005) Sphere packing with a geometric based compression algorithm. Powder Technol 155:33–41. doi: 10.1016/j.powtec.2005.04.055 CrossRefGoogle Scholar
  21. 21.
    Chiu SN, Stoyan D, Kendall WS, Mecke J (2013) Stochastic geometry and its applications. WileyGoogle Scholar
  22. 22.
    Wicksell SD (1925) The corpuscle problem I. Biometrika 17:84–89zbMATHGoogle Scholar
  23. 23.
    Wicksell SD (1926) The corpuscle problem II. Biometrika 18:152–172zbMATHGoogle Scholar
  24. 24.
    Gulbin Y (2008) On estimation and hypothesis testing of the grain size distribution by the Saltykov method. Image Anal Stereol 27:163–174MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Feng YT, Han K, Owen DRJ (2002) An advancing front packing of polygons, ellipses and spheres. In: Paper presented at the conference discrete element methods. Numerical modeling of discontinua. American Society of Civil Engineers, vol 117. pp 93–98. doi: 10.1061/40647(259)17
  26. 26.
    Morales IP, de Farias MM, Valera RR, Morfa CR, Martínez Carvajal HE (2016) Contributions to the generalization of advancing front particle packing algorithms. Int J Numer Methods Eng 107(12):993–1008. doi: 10.1002/nme.5192
  27. 27.
    Pérez Morales I, Roselló Valera R, Recarey Morfa C, Muniz de Farias M (2017) Dense packing of general-shaped particles using a minimization technique. Comput Part Mech 4(2):165–179. doi: 10.1007/s40571-016-0103-x
  28. 28.
    Krauss G (2005) Steels: processing, structure, and performance. ASM International. ISBN: 0-87170-817-5Google Scholar
  29. 29.
    Tao NR, Wang ZB, Tong WP, Sui ML, Lu J, Lu K (2002) An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater 50:4603–4616CrossRefGoogle Scholar

Copyright information

© OWZ 2017

Authors and Affiliations

  1. 1.Center of Computational Mechanics and Numerical Methods in Engineering, CIMNE-UCLV ClassroomCentral University of Las VillasSanta ClaraCuba
  2. 2.Faculty of TechnologyUniversity of BrasiliaBrasiliaBrazil
  3. 3.International Center for Numerical Methods in EngineeringPolitechnical University of CatalonyaBarcelonaSpain

Personalised recommendations