Advertisement

Computational Particle Mechanics

, Volume 5, Issue 2, pp 175–189 | Cite as

On the computational aspects of comminution in discrete element method

  • Mohsin Ali Chaudry
  • Peter Wriggers
Article

Abstract

In this paper, computational aspects of crushing/comminution of granular materials are addressed. For crushing, maximum tensile stress-based criterion is used. Crushing model in discrete element method (DEM) is prone to problems of mass conservation and reduction in critical time step. The first problem is addressed by using an iterative scheme which, depending on geometric voids, recovers mass of a particle. In addition, a global–local framework for DEM problem is proposed which tends to alleviate the local unstable motion of particles and increases the computational efficiency.

Keywords

Discrete element method Crushing Mass conservation Global–local framework 

Notes

Acknowledgements

The support of the DFG (Deutsche Forschungsgemeinschaft) under grant number WR 19/55-1 and DU 405/9-1 is gratefully acknowledged.

References

  1. 1.
    McDowell G, Harireche O (2002) Discrete element modelling of soil particle fracture. Geotech-Lond 52(2):131–136CrossRefGoogle Scholar
  2. 2.
    Cheng Y, Nakata Y, Bolton M (2003) Discrete element simulation of crushable soil. Geotechnique 53(7):633–642CrossRefGoogle Scholar
  3. 3.
    Bolton M, Nakata Y, Cheng Y (2008) Micro-and macro-mechanical behaviour of dem crushable materials. Géotechnique 58(6):471–480CrossRefGoogle Scholar
  4. 4.
    Ben-Nun O, Einav I (2008) A refined DEM study of grain size reduction in uniaxial compression. In: The 12th international conference of international association for computer methods and advances in geomechanics (IACMAG), Goa, India, pp 702–708Google Scholar
  5. 5.
    Marketos G, Bolton MD (2009) Compaction bands simulated in discrete element models. J Struct Geol 31(5):479–490CrossRefGoogle Scholar
  6. 6.
    Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65CrossRefGoogle Scholar
  7. 7.
    Gladwell GM (1980) Contact problems in the classical theory of elasticity. Springer Science and Business Media, BerlinCrossRefzbMATHGoogle Scholar
  8. 8.
    Johnson KL, Johnson KL (1987) Contact mechanics. Cambridge university press, CambridgezbMATHGoogle Scholar
  9. 9.
    Mindlin RD (1949) Compliance of elastic bodies in contact. J Appl Mech 16:259–268MathSciNetzbMATHGoogle Scholar
  10. 10.
    Åström J, Herrmann H (1998) Fragmentation of grains in a two-dimensional packing. Eur Phys J B-Condens Matter Complex Syst 5(3):551–554CrossRefGoogle Scholar
  11. 11.
    Tsoungui O, Vallet D, Charmet J-C (1999) Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol 105(1):190–198CrossRefGoogle Scholar
  12. 12.
    McDowell GR, de Bono JP (2013) On the micro mechanics of one-dimensional normal compression. Géotechnique 63(11):895CrossRefGoogle Scholar
  13. 13.
    Ciantia M, Arroyo Alvarez de Toledo M, Calvetti F, Gens Solé A (2015) An approach to enhance efficiency of dem modelling of soils with crushable grains. Géotechnique 65(2):91–110CrossRefGoogle Scholar
  14. 14.
    Russell AR, Wood DM (2009) Point load tests and strength measurements for brittle spheres. Int J Rock Mech Min Sci 46(2):272–280Google Scholar
  15. 15.
    Hiramatsu Y, Oka Y (1966) Determination of the tensile strength of rock by a compression test of an irregular test piece, In: International journal of rock mechanics and mining sciences and geomechanics abstracts, Vol. 3, Elsevier, pp 89–90Google Scholar
  16. 16.
    Cil M, Alshibli K (2012) 3D assessment of fracture of sand particles using discrete element method. Géotechnique Lett 2:161–166CrossRefGoogle Scholar
  17. 17.
    McDowell G, Bolton M (1998) On the micromechanics of crushable aggregates. Géotechnique 48(5):667–679CrossRefGoogle Scholar
  18. 18.
    Jaeger J, Hoskins E (1966) Rock failure under the confined brazilian test. J Geophys Res 71(10):2651–2659CrossRefGoogle Scholar
  19. 19.
    Russell AR, Wood DM, Kikumoto M (2009) Crushing of particles in idealised granular assemblies. J Mech Phys Solids 57(8):1293–1313CrossRefzbMATHGoogle Scholar
  20. 20.
    Weibull W (1951) A statistical distribution function of wide application. J Appl Mech 18:293–297zbMATHGoogle Scholar
  21. 21.
    de Bono JP, McDowell GR (2014) Dem of triaxial tests on crushable sand. Granul Matter 16(4):551–562CrossRefGoogle Scholar
  22. 22.
    Borkovec M, De Paris W, Peikert R (1994) The fractal dimension of the apollonian sphere packing. Fractals 2(04):521–526MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wellmann C (2011) A two-scale model of granular materials using a coupled DE-FE approach. Phd thesis, Inst für Kontinuumsmechanik, Gottfried Wilhelm Leibniz Universität HannoverGoogle Scholar
  24. 24.
    Einav I (2007) Fracture propagation in brittle granular matter, In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, Vol. 463, The Royal Society, pp 3021–3035Google Scholar
  25. 25.
    Yang Z, Jardine R, Zhu B, Foray P, Tsuha C (2010) Sand grain crushing and interface shearing during displacement pile installation in sand. Géotechnique 60(6):469–482CrossRefGoogle Scholar
  26. 26.
    Verlet L (1967) Computer” experiments” on classical fluids. I. thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98CrossRefGoogle Scholar

Copyright information

© OWZ 2017

Authors and Affiliations

  1. 1.Institute of Continuum MechanicsLeibniz University HannoverHannoverGermany

Personalised recommendations