Computational Particle Mechanics

, Volume 5, Issue 2, pp 141–160 | Cite as

Modified Finite Particle Methods for Stokes problems

  • A. Montanino
  • D. Asprone
  • A. Reali
  • F. Auricchio


The Modified Finite Particle Method (MFPM) is a numerical method belonging to the class of meshless methods, nowadays widely investigated due to their characteristic of being capable to easily model large deformation and fluid-dynamic problems. Here we use the MFPM to approximate the Stokes problem. Since the classical formulation of the Stokes problem may lead to pressure spurious oscillations, we investigate alternative formulations and focus on how MFPM discretization behaves in those situations. Some of the investigated formulations, in fact, do not enforce strongly the incompressibility constraint, and therefore an important issue of the present work is to verify if the MFPM is able to correctly reproduce the incompressibility in those cases. The numerical results show that for the formulations in which the incompressibility constraint is properly satisfied from a numerical point of view, the expected second-order is achieved, both in static and in dynamic problems.


Particle methods Collocation methods Projection methods Fluid-dynamics 


  1. 1.
    Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024CrossRefGoogle Scholar
  2. 2.
    Gingold RA, Monaghan JJ (1977) Smoothed Particle Hydrodynamics: theory and application to non spherical stars. Mon Not R Astron Soc 181:375–389CrossRefzbMATHGoogle Scholar
  3. 3.
    Liu WK, Jun S, Zhang YF (1995a) Reproducing Kernel Particle Methods. Int J Numer Meth Fluids 20:1081–1106MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Liu WK, Jun S, Li S, Adee J, Belytschko T (1995b) Reproducing Kernel Particle Methods for structural dynamics. Int J Numer Meth Eng 38:1655–1680MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen JK, Beraun JE, Carney TC (1999a) A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Meth Eng 46:231–252CrossRefzbMATHGoogle Scholar
  6. 6.
    Chen JK, Beraun JE, Jih CJ (1999b) An improvement for tensile instability in smoothed particle hydrodynamics. Comput Mech 23:279–287CrossRefzbMATHGoogle Scholar
  7. 7.
    Liu MB, Xie WP, Liu GR (2005) Modeling incompressible flows using a finite particle method. Appl Math Model 29(12):1252–1270CrossRefzbMATHGoogle Scholar
  8. 8.
    Liu MB, Liu GR (2006) Restoring particle consistency in smoothed particle hydrodynamics. Appl Numer Math 56(1):19–36MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Liu Mou-Bin, Liu Gui-Rong (2015) Particle methods for multi-scale and multi-physics. World Scientific, SingaporezbMATHGoogle Scholar
  10. 10.
    Zhang GM, Batra RC (2004) Modified smoothed particle hydrodynamics method and its application to transient problems. Comput Mech 34:137–146zbMATHGoogle Scholar
  11. 11.
    Fang Jiannong, Parriaux Aurèle, Rentschler Martin, Ancey Christophe (2009) Improved sph methods for simulating free surface flows of viscous fluids. Appl Numer Math 59(2):251–271MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chi SW, Chen JS, Luo H, Hu HY, Wang L (2013) Dispersion and stability properties of radial basis collocation method for elastodynamics. Numer Methods Partial Differ Eq 29(3):818–842Google Scholar
  13. 13.
    Wang JG, Liu GR (2002) On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput Methods Appl Mech Eng 191:2611–2630MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Demirkaya G, Soh C Wafo, Ilegbusi OJ (2008) Direct solution of Navier–Stokes equations by radial basis functions. Appl Math Model 32(9):1848–1858MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bustamante CA, Power H, Sua YH, Florez WF (2013a) A global meshless collocation particular solution method (integrated radial basis function) for two-dimensional stokes flow problems. Appl Math Model 37(6):4538–4547MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bustamante CA, Power H, Florez WF (2013b) A global meshless collocation particular solution method for solving the two-dimensional Navier–Stokes system of equations. Comput Math Appl 65(12):1939–1955MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Benito JJ, Ureña F, Gavete L (2007) Solving parabolic and hyperbolic equations by the generalized finitedifference method. J Comput Appl Math 209:208–233MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ureña F, Benito JJ, Gavete L (2011) Application of the generalized finite difference method to solve the advection–diffusion equation. J Comput Appl Math 1849–1855:2011MathSciNetzbMATHGoogle Scholar
  19. 19.
    Ureña F, Salete E, Benito JJ, Gavete L (2012) Solving third- and fourth-order partial differential equations using GFDM: application to solve paroblems of plates. Int J Comput Math 89:366–376MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gavete L, Ureña F, Benito J, Salete E (2012) A note on the dynamic analysis using the generalized finite difference method. J Comput Appl Math 236:3016–3025MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ding H, Shu C, Yeo KS, Xu D (2004a) Development of least-square-based two-dimensional finite-difference schemes and their application to simulate natural convection in a cavity. Comput Fluids 33(1):137–154MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ding H, Shu C, Yeo KS, Xu D (2004b) Simulation of incompressible viscous flows past a circular cylinder by hybrid fd scheme and meshless least square-based finite difference method. Comput Methods Appl Mech Eng 193(9):727–744CrossRefzbMATHGoogle Scholar
  23. 23.
    Asprone D, Auricchio F, Manfredi G, Prota A, Reali A, Sangalli G (2010) Particle methods for a 1d elastic model problem: error analysis and development of a second-order accurate formulation. Comput Model Eng Sci 62:1–21MathSciNetzbMATHGoogle Scholar
  24. 24.
    Asprone D, Auricchio F, Reali A (2011) Novel finite particle formulations based on projection methodologies. Int J Numer Meth Fluids 65:1376–1388MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Asprone D, Auricchio F, Reali A (2014a) Modified finite particle method: applications to elasticity and plasticity problems. Int J Comput Methods 11(01) 1350050Google Scholar
  26. 26.
    Asprone D, Auricchio F, Montanino A, Reali A (2014b) A modified finite particle method: multi-dimensional elasto-statics and dynamics. Int J Numer Methods Eng 99(1):1–25Google Scholar
  27. 27.
    Asprone D, Auricchio F, Montanino A, Reali A (2015) Review of the modified finite particle method and application to incompressible solids. Int J Multiphys 9(3):235–248Google Scholar
  28. 28.
    Strikwerda John C (1984) Finite difference methods for the stokes and Navier-Stokes equations. SIAM J Sci Stat Comput 5(1):56–68MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Gresho Philip M, Sani Robert L (1987) On pressure boundary conditions for the incompressible navier-stokes equations. Int J Numer Methods Fluids 7(10):1111–1145. ISSN 1097-0363. doi: 10.1002/fld.1650071008
  30. 30.
    Sani Robert L, Shen J, Pironneau Olivier, Gresho PM (2006) Pressure boundary condition for the time-dependent incompressible Navier–Stokes equations. Int J Numer Meth Fluids 50(6):673–682MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Harlow Francis H, Welch J Eddie et al (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8(12):2182MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Young DL, Jane SC, Lin CY, Chiu CL, Chen KC (2004) Solutions of 2d and 3d stokes laws using multiquadrics method. Eng Anal Bound Elem 28(10):1233–1243CrossRefzbMATHGoogle Scholar
  33. 33.
    Chinchapatnam Phani P, Djidjeli K, Nair Prasanth B (2007) Radial basis function meshless method for the steady incompressible Navier–Stokes equations. Int J Comput Math 84(10):1509–1521MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Young DL, Jane SJ, Fan CM, Murugesan K, Tsai CC (2006) The method of fundamental solutions for 2d and 3d stokes problems. J Comput Phys 211(1):1–8CrossRefzbMATHGoogle Scholar
  35. 35.
    Lin H, Atluri SN (2001) The Meshless Local Petrov-Galerkin (MLPG) method for solving incompressible Navier–Stokes equations. CMES Comput Model Eng Sci 2(2):117–142MathSciNetGoogle Scholar
  36. 36.
    Brezzi Franco, Douglas Jim Jr (1988) Stabilized mixed methods for the stokes problem. Numer Math 53(1–2):225–235MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Quarteroni Alfio, Saleri Fausto, Veneziani Alessandro (2000) Factorization methods for the numerical approximation of Navier–Stokes equations. Comput Methods Appl Mech Eng 188(1):505–526MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Wang Cheng, Liu Jian-Guo (2000) Convergence of gauge method for incompressible flow. Math Comput 69(232):1385–1407MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Weinan E, Liu Jian-Guo (2003) Gauge method for viscous incompressible flows. Commun Math Sci 1(2):317–332MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Auricchio F, Beirao da Veiga L, Buffa A, Lovadina C, Reali A, Sangalli G (2007) A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation. Comput Methods Appl Mech Eng 197(1):160–172MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Chorin Alexandre Joel (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 2(1):12–26MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Chorin Alexandre Joel (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22(104):745–762MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Weinan E, Liu J-G (1995) Projection method i: convergence and numerical boundary layers. SIAM J Numer Anal 32(4):1017–1057Google Scholar
  44. 44.
    Brown David L, Cortez Ricardo, Minion Michael L (2001) Accurate projection methods for the incompressible Navier–Stokes equations. J Comput Phys 168(2):464–499MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Bell John B, Colella Phillip, Glaz Harland M (1989) A second-order projection method for the incompressible Navier–Stokes equations. J Comput Phys 85(2):257–283MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Kim John, Moin Parviz (1985) Application of a fractional-step method to incompressible Navier–Stokes equations. J Comput Phys 59(2):308–323MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© OWZ 2017

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Civile ed Ambientale (DICA)Politecnico di MilanoMilanoItaly
  2. 2.Dipartimento di Strutture per l’Ingegneria e l’Architettura (DiSt)Università degli Studi di Napoli “Federico II”NapoliItaly
  3. 3.Dipartimento di Ingegneria Civile ed Architettura (DICAr)Università degli Studi di PaviaPaviaItaly
  4. 4.Institute for Advanced Study (IAS)Technische Universität München (TUM)MunchenGermany

Personalised recommendations