Skip to main content
Log in

A mesoscopic simulation of static and dynamic wetting using many-body dissipative particle dynamics

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A many-body dissipative particle dynamics simulation is applied here to pave the way for investigating the behavior of mesoscale droplets after impact on horizontal solid substrates. First, hydrophobic and hydrophilic substrates are simulated through tuning the solid–liquid interfacial interaction parameters of an innovative conservative force model. The static contact angles are calculated on homogeneous and several patterned surfaces and compared with the predicted values by the Cassie’s law in order to verify the model. The results properly evaluate the amount of increase in surface superhydrophobicity as a result of surface patterning. Then drop impact phenomenon is studied by calculating the spreading factor and dimensionless height versus dimensionless time and the comparisons made between the results and the experimental values for three different static contact angles. The results show the capability of the procedure in calculating the amount of maximum spreading factor, which is a significant concept in ink-jet printing and coating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kannangara D, Zhang H, Shen W (2006) Liquid–paper interactions during liquid drop impact and recoil on paper surfaces. Colloids Surf A Physicochem Eng Asp 280:203–215

    Article  Google Scholar 

  2. Asai A, Shioya M, Hirasawa S, Okazaki T (1993) Impact of an ink drop on paper. J Imaging Sci Technol 37:205–207

    Google Scholar 

  3. Heilmann J (2001) Measuring dynamic interactions between paper and microscale ink drops. In: Proceedings of the NIP17, international conference on digital printing technologies

  4. Mei J, Lovell MR, Mickle MH (2005) Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits. IEEE Trans Electron Packag Manuf 28:265–273

    Article  Google Scholar 

  5. Maier C, Wiesche S, Hofer EP (2000) Impact of microdrops on solid surfaces for DNA-synthesis. In: Proceedings of the 2000 international conference on modeling and simulation of microsystems

  6. Schiaffino S, Sonin AA (1997) Molten droplet deposition and solidification at low Weber numbers. Phys Fluids 9:3172–3187

    Article  Google Scholar 

  7. Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33:112–124

    Article  Google Scholar 

  8. Son Y, Kim C, Yang DH, Ahn DJ (2008) Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers. Langmuir 24:2900–2907

    Article  Google Scholar 

  9. Pagonabarraga I, Frenkel D (2001) Dissipative particle dynamics for interacting systems. J Chem Phys 115:5015–5026

    Article  Google Scholar 

  10. Warren PB (2003) Vapor–liquid coexistence in many-body dissipative particle dynamics. Phys Rev E 68:066702

    Article  Google Scholar 

  11. Hoogerbrugge PJ, Koelman JMVA (1992) Simulation microscopic hydrodynamics phenomena with dissipative particle dynamics. Europhys Lett 19:155–160

    Article  Google Scholar 

  12. Merabia S, Pagonabarraga I (2006) A mesoscopic model for (de)wetting. Eur Phys J E 20:209–214

    Article  Google Scholar 

  13. Berthier J, Silberzan P (2006) Microfluidics for biotechnology. Artech House, Boston

    Google Scholar 

  14. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:0546–0550

    Article  Google Scholar 

  15. Kong B, Yang X (2006) Dissipative particle dynamics simulation of contact angle hysteresis on a patterned solid/air composite surface. Langmuir 22:2065–2073

    Article  Google Scholar 

  16. Espanol P, Warren P (1995) Statistical-mechanics of dissipative particle dynamics. Europhys Lett 30:191–196

    Article  Google Scholar 

  17. Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435

    Article  Google Scholar 

  18. Clark AT, Lal M, Ruddock JN, Warren PB (2000) Mesoscopic simulation of drops in gravitational and shear fields. Langmuir 16:6342–6350

    Article  Google Scholar 

  19. Lees AW, Edwards SF (1972) The computer study of transport processes under extreme conditions. J Phys C Solid State Phys 5:1921–1929

    Article  Google Scholar 

  20. Henrich B, Cupelli C, Moseler M, Santer M (2007) An adhesive DPD wall model for dynamic wetting. EPL 80:60004

    Article  Google Scholar 

  21. Revenga M, Zuniga I, Espanol P, Pagonabarraga I (1998) Boundary models in DPD. Int J Mod Phys C 9:1319–1328

    Article  Google Scholar 

  22. Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmadreza Pishevar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, N., Pishevar, A. A mesoscopic simulation of static and dynamic wetting using many-body dissipative particle dynamics. Comp. Part. Mech. 5, 113–123 (2018). https://doi.org/10.1007/s40571-017-0157-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-017-0157-4

Keywords

Navigation