Skip to main content
Log in

Torsional shear flow of granular materials: shear localization and minimum energy principle

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The rheological properties of granular matter submitted to torsional shear are investigated numerically by means of discrete element method. The shear cell is made of a cylinder filled by grains which are sheared by a bumpy bottom and submitted to a vertical pressure which is applied at the top. Regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. The effects of the (i) the applied pressure, (ii) sidewall friction, and (iii) angular velocity are investigated. A model, based on the purely local \(\mu (I)\)-rheology and a minimum energy principle is able to capture the effect of the two former quantities but unable to account the effect of the latter. Although, an ad hoc modification of the model allows to reproduce all the numerical results, our results point out the need for an alternative rheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Artoni R, Santomaso A (2014) Effective wall slip in chutes and channels: experiments and discrete element simulations. Granul Matter 16(3):377–382

    Article  Google Scholar 

  2. Nedderman R, Laohakul C (1980) The thickness of the shear zone of flowing granular materials. Powder Technol 25(1):91–100

    Article  Google Scholar 

  3. Natarajan VVR, Hunt ML, Taylor ED (1995) Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow. J Fluid Mech 304:1–25

    Article  Google Scholar 

  4. Midi GDR (2004) On dense granular flows. Eur Phys J E 14(4):341–365

    Article  Google Scholar 

  5. Singh A, Magnanimo V, Saitoh K, Luding S (2014) Effect of cohesion on shear banding in quasistatic granular materials. Phys Rev E 90:022,202

    Article  Google Scholar 

  6. Singh A, Magnanimo V, Saitoh K, Luding S (2015) The role of gravity or pressure and contact stiffness in granular rheology. N J Phys 17(4):043,028

    Article  Google Scholar 

  7. Moosavi R, Shaebani MR, Maleki M, Török J, Wolf DE, Losert W (2013) Coexistence and transition between shear zones in slow granular flows. Phys Rev Lett 111:148,301

    Article  Google Scholar 

  8. Fenistein D, van Hecke M (2003) Kinematics: wide shear zones in granular bulk flow. Nature 425(6955):256–256

    Article  Google Scholar 

  9. Jop P (2008) Hydrodynamic modeling of granular flows in a modified couette cell. Phys Rev E 77:032,301

    Article  Google Scholar 

  10. da Cruz F, Emam S, Prochnow M, Roux JN, Chevoir FMC (2005) Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys Rev E 72:021,309

    Article  Google Scholar 

  11. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441:727–730

    Article  Google Scholar 

  12. Cortet PP, Bonamy D, Daviaud F, Dauchot O, Dubrulle B, Renouf M (2009) Relevance of visco-plastic theory in a multi-directional inhomogeneous granular flow. Europhys Lett 88(1):14,001

    Article  Google Scholar 

  13. Brodu N, Richard P, Delannay R (2013) Shallow granular flows down flat frictional channels: steady flows and longitudinal vortices. Phys Rev E 87:022,202

    Article  Google Scholar 

  14. Kamrin K, Koval G (2012) Nonlocal constitutive relation for steady granular flow. Phys Rev Lett 108:178,301

    Article  Google Scholar 

  15. Henann DL, Kamrin K (2013) A predictive, size-dependent continuum model for dense granular flows. Proc Natl Acad Sci USA 110(17):6730–6735

    Article  MathSciNet  MATH  Google Scholar 

  16. Kamrin K, Henann DL (2015) Nonlocal modeling of granular flows down inclines. Soft Matter 11:179–185

    Article  Google Scholar 

  17. Henann DL, Kamrin K (2014) Continuum modeling of secondary rheology in dense granular materials. Phys Rev Lett 113:178,001

    Article  Google Scholar 

  18. Jenkins J, Berzi D (2010) Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory. Granul Matter 12:151–158

    Article  MATH  Google Scholar 

  19. Jenkins J, Berzi D (2012) Kinetic theory applied to inclined flows. Granul Matter 14:79–84. doi:10.1007/s10035-011-0308-x

    Article  Google Scholar 

  20. Artoni R, Santomaso A, Canu P (2011) Hysteresis in a hydrodynamic model of dense granular flows. Phys Rev E 83:051,304

    Article  MATH  Google Scholar 

  21. Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177(3–4):235–257

    Article  MathSciNet  MATH  Google Scholar 

  22. Renouf M, Dubois F, Alart P (2004) A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media. J Comput Appl Math 168(1–2):375–382. Selected papers from the second international conference on advanced computational methods in engineering (ACOMEN 2002)

  23. Dippel S, Wolf D (1999) Molecular dynamics simulations of granular chute flow. Comput Phys Commun 121:284–289. In: Proceedings of the europhysics conference on computational physics CCP 1998

  24. Glasser BJ, Goldhirsch I (2001) Scale dependence, correlations, and fluctuations of stresses in rapid granular flows. Phys Fluids 13(2):407–420

    Article  MATH  Google Scholar 

  25. Babic M (1997) Average balance equations for granular materials. Int J Eng Sci 35(5):523–548

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu HP, Yu AB (2002) Averaging method of granular materials. Phys Rev E 66:021,302

    Article  Google Scholar 

  27. Weinhart T, Thornton A, Luding S, Bokhove O (2012) From discrete particles to continuum fields near a boundary. Granul Matter 14:289–294

    Article  Google Scholar 

  28. Artoni R, Richard P (2015) Average balance equations, scale dependence, and energy cascade for granular materials. Phys Rev E 91:032,202

    Article  MathSciNet  Google Scholar 

  29. Weinhart T, Hartkamp R, Thornton AR, Luding S (2013) Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys Fluids 25(7):070605

    Article  Google Scholar 

  30. Luding S (2008) Constitutive relations for the shear band evolution in granular matter under large strain. Particuology 6(6):501–505

    Article  Google Scholar 

  31. Artoni R, Richard P (2015) Effective wall friction in wall-bounded 3d dense granular flows. Phys Rev Lett 115:158,001

    Article  Google Scholar 

  32. Koval G, Roux JN, Corfdir A, Chevoir FMC (2009) Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Phys Rev E 79:021,306

    Article  Google Scholar 

  33. Staron L, Lagrée PY, Popinet S (2014) Continuum simulation of the discharge of the granular silo. Eur Phys J E 37(1):1–12

    Article  Google Scholar 

  34. Byron Bird R, Stewart WE, Lightfoot EN (2007) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  35. Unger T, Török J, Kertész J, Wolf DE (2004) Shear band formation in granular media as a variational problem. Phys Rev Lett 92:214,301

    Article  Google Scholar 

  36. Orlando A, Shen H (2013) Using the annular shear cell as a rheometer for rapidly sheared granular materials: a dem study. Granul Matter 15:1–12

    Article  Google Scholar 

Download references

Acknowledgments

The numerical simulations were carried out at the CCIPL (Centre de Calcul Intensif des Pays de la Loire) under the project MTEEGD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Artoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artoni, R., Richard, P. Torsional shear flow of granular materials: shear localization and minimum energy principle. Comp. Part. Mech. 5, 3–12 (2018). https://doi.org/10.1007/s40571-016-0143-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-016-0143-2

Keywords

Navigation