Skip to main content
Log in

Three-dimensional bonded-cell model for grain fragmentation

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

We present a three-dimensional numerical method for the simulation of particle crushing in 3D. This model is capable of producing irregular angular fragments upon particle fragmentation while conserving the total volume. The particle is modeled as a cluster of rigid polyhedral cells generated by a Voronoi tessellation. The cells are bonded along their faces by a cohesive Tresca law with independent tensile and shear strengths and simulated by the contact dynamics method. Using this model, we analyze the mechanical response of a single particle subjected to diametral compression for varying number of cells, their degree of disorder, and intercell tensile and shear strength. In particular, we identify the functional dependence of particle strength on the intercell strengths. We find that two different regimes can be distinguished depending on whether intercell shear strength is below or above its tensile strength. In both regimes, we observe a power-law dependence of particle strength on both intercell strengths but with different exponents. The strong effect of intercell shear strength on the particle strength reflects an interlocking effect between cells. In fact, even at low tensile strength, the particle global strength can still considerably increase with intercell shear strength. We finally show that the Weibull statistics describes well the particle strength variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Åström J, Herrmann H (1998) Fragmentation of grains in a two-dimensional packing. Eur Phys J B 5(3):551–554

    Article  Google Scholar 

  2. Azéma E, Radjai F (2010) Stress-strain behavior and geometrical properties of packings of elongated particles. Phys Rev E 81:051,304

    Article  Google Scholar 

  3. Azéma E, Estrada N, Radjai F (2012) Nonlinear effects of particle shape angularity in sheared granular media. Phys Rev E 86:041,301

    Article  Google Scholar 

  4. Azéma E, Radjai F (2012) Force chains and contact network topology in sheared packings of elongated particles. Phys Rev E 85:031,303

    Article  Google Scholar 

  5. Azéma E, Radjai F, Peyroux R, Saussine G (2007) Force transmission in a packing of pentagonal particles. Phys Rev E 76(1 Pt 1):011,301

    Article  Google Scholar 

  6. Azéma E, Radjai F, Saint-Cyr B, Delenne JY, Sornay P (2013) Rheology of 3D packings of aggregates: microstructure and effects of nonconvexity. Phys Rev E 87:052,205

    Article  Google Scholar 

  7. Azéma E, Radjai F, Saussine G (2009) Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech Mater 41:721–741

    Article  Google Scholar 

  8. Bagherzadeh Kh A, Mirghasemi A, Mohammadi S (2011) Numerical simulation of particle breakage of angular particles using combined dem and fem. Powder Technol 205(1–3):15–29

    Article  Google Scholar 

  9. Bandini V, Coop MR (2011) The influence of particle breakage on the location of the critical state line of sands. Soils Found 51(4):591–600

    Article  Google Scholar 

  10. Barton N (1976) The shear strength of rock and rock joints. Int J Rock Mech Min Sci Geomech Abstr 13(9):255–279

    Article  Google Scholar 

  11. Barton N (2013) Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. J Rock Mech Geotech Eng 5(4):249–261

    Article  Google Scholar 

  12. Bratberg I, Radjai F, Hansen A (2002) Dynamic rearrangements and packing regimes in randomly deposited two-dimensional granular beds. Phys Rev E 66(3):1–34

    Article  Google Scholar 

  13. Cecconi M, DeSimone A, Tamagnini C, Viggiani G (2002) A constitutive model for granular materials with grain crushing and its application to a pyroclastic soil. Int J Numer Anal Meth Geomech 26(15):1531–1560

    Article  MATH  Google Scholar 

  14. Chau K, Wei X (1998) Spherically isotropic elastic spheres subject to diametral point load strength test. Int J Solids Struct 25

  15. Cheng YP, Nakata Y, Bolton MD (2008) Micro- and macro-mechanical behaviour of dem crushable materials. Géotechnique 58(6):471–480

    Article  Google Scholar 

  16. Ciantia M, Arroyo M, Calvetti F, Gens A (2015) An approach to enhance efficiency of dem modelling of soils with crushable grains. Geotechnique 65(2):91–110

    Article  Google Scholar 

  17. Cundall PA (1988) Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci 25(3):107–116

    Article  Google Scholar 

  18. Du Q, Faber V, Gunzburger M (1999) Centroidal Voronoi tessellations: applications and algorithms. SIAM J Numer Anal 41(4):637–676

    MathSciNet  MATH  Google Scholar 

  19. Estrada N, Azéma E, Radjai F, Taboada A (2011) Identification of rolling resistance as a shape parameter in sheared granular media. Phys Rev E 84(1):011306

    Article  Google Scholar 

  20. Dubois F, Jean M, et al (2016) LMGC90 wiki page. https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home. Accessed 7 Mar 2016

  21. Fukumoto T (1992) Particle breakage characteristics of granular soils. Soils Found 32(1):26–40

    Article  Google Scholar 

  22. Galindo-Torres S, Pedroso D, Williams D, Li L (2012) Breaking processes in three-dimensional bonded granular materials with general shapes. Comput Phys Commun 183(2):266–277

    Article  Google Scholar 

  23. Guimaraes M, Valdes J, Palomino AM, Santamarina J (2007) Aggregate production: Fines generation during rock crushing. Int J Miner Process 81(4):237–247

    Article  Google Scholar 

  24. Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192

    Article  Google Scholar 

  25. Hégron L, Sornay P, Favretto-Cristini N (2014) Compaction of a bed of fragmentable UO2 particles and associated acoustic emission. IEEE Trans Nucl Sci 61(4):2175–2181

    Article  Google Scholar 

  26. Jaeger H (2015) Celebrating soft matter’s 10th anniversary: Toward jamming by design. Soft Matter 11:12

    Article  Google Scholar 

  27. Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177(3–4):235–257

    Article  MathSciNet  MATH  Google Scholar 

  28. Kun F, Herrmann H (1996) A study of fragmentation processes using a discrete element method. Comput Methods Appl Mech Eng 7825(96)

  29. Lade PV, Yamamuro J, Bopp P (1997) Significance of particle crushing in granular materials. J Geotech Geoenviron Eng 123(9):889–890

    Article  Google Scholar 

  30. Lobo-guerrero S, Vallejo LE (2005) Discrete element method evaluation of granular crushing under direct shear test conditions. J Geotech Geoenviron Eng 131(10):1295–1300

    Article  Google Scholar 

  31. Ma G, Zhou W, Chang XL (2014) Modeling the particle breakage of rockfill materials with the cohesive crack model. Comput Geotech 61:132–143

    Article  Google Scholar 

  32. McDowell G, Bolton M (1998) On the micromechanics of crushable aggregates. Géotechnique 48(5):667–679

    Article  Google Scholar 

  33. McDowell G, Bolton M, Robertson D (1996) The fractal crushing of granular materials. J Mech Phys Solids 44(12):2079–2101

    Article  Google Scholar 

  34. Miura N, Murata H, Yasufuku N (1984) Stress-strain characteristics of sand in a particle-crushing region. Soils Found 24(1):77–89

    Article  Google Scholar 

  35. Moreau J (1994) Some numerical methods in multibody dynamics: application to granular. Eur J Mech A Solids 13:93–114

    MathSciNet  MATH  Google Scholar 

  36. Nezamabadi S, Radjai F, Averseng J, Delenne J (2015) Implicit frictional-contact model for soft particle systems. J Mech Phys Solids 83:72–87

    Article  MathSciNet  Google Scholar 

  37. Nezami EG, Hashash YMA, Zhao D, Ghaboussi J (2004) A fast contact detection algorithm for 3-D discrete element method. Comput Geotech 31(7):575–587

    Article  Google Scholar 

  38. Nezami EG, Hashash YMA, Zhao D, Ghaboussi J (2006) Shortest link method for contact detection in discrete element method. Int J Numer Anal Meth Geomech 30(8):783–801

    Article  MATH  Google Scholar 

  39. Nguyen DH, Azéma E, Radjai F (2015) Evolution of particle size distributions in crushable granular materials. Geomechanics from Micro to Macro (Md), pp 275–280

  40. Nguyen DH, Azéma E, Sornay P, Radjai F (2015) Bonded-cell model for particle fracture. Phys Rev E 91(2):022,203

    Article  MathSciNet  Google Scholar 

  41. Nouguier C, Bohatier C, Moreau JJ, Radjai F (2000) Force fluctuations in a pushed granular material. Granular Matter 2:171–178

    Article  Google Scholar 

  42. Okabe A, Boots B, Sugihara K, Chiu SN (1992) Spatial tessellations: concepts and applications of voronoi diagrams. Wiley, New York

    MATH  Google Scholar 

  43. Quey R, Dawson P, Barbe F (2011) Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Comput Methods Appl Mech Eng 200(17–20):1729–1745

    Article  MATH  Google Scholar 

  44. Quezada JC, Breul P, Saussine G, Radjai F (2012) Stability, deformation, and variability of granular fills composed of polyhedral particles. Phys Rev E 86(3):1–11

    Article  Google Scholar 

  45. Radjai F, Richefeu V, Jean Mm, Moreau JJ, Roux S (1996) Force Distributions in Dense Two-Dimensional Granular Systems. Phys Rev Lett 77(2):274–277

    Article  Google Scholar 

  46. Radjai F, Richefeu V (2009) Contact dynamics as a nonsmooth discrete element method. Mech Mater 41(6):715–728

    Article  Google Scholar 

  47. Radjai F, Dubois F (2011) Discrete-element modeling of granular materials. ISTE Ltd and Wiley, London

    Google Scholar 

  48. Renouf M, Dubois F, Alart P (2004) A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media. J Comput Appl Math 168(1–2):375–382

    Article  MathSciNet  MATH  Google Scholar 

  49. Ries A, Wolf DE, Unger T (2007) Shear zones in granular media: Three-dimensional contact dynamics simulation. Phys Rev E 76(5):1–9

    Article  Google Scholar 

  50. Russell AR, Muir Wood D, Kikumoto M (2009) Crushing of particles in idealised granular assemblies. J Mech Phys Solids 57(8):1293–1313

    Article  MATH  Google Scholar 

  51. Saussine G, Cholet C, Gautier PE, Dubois F, Bohatier C, Moreau JJ (2011) Modelling ballast behaviour under dynamic loading. Part 1: A 2D polygonal discrete element method approach. Comput Methods Appl Mech Eng 195(19–22):2841–2859

    MATH  Google Scholar 

  52. Saint-Cyr B, Delenne J, Voivret C, Radjai F, Sornay P (2011) Rheology of granular materials composed of nonconvex particles. Phys Rev E 84(4):041302

    Article  Google Scholar 

  53. Staron L, Radjai F, Vilotte J (2005) Multi-scale analysis of the stress state in a granular slope in transition to failure. Eur. Phys. J. E 18:311–320

    Article  Google Scholar 

  54. Staron L, Vilotte JP, Radjai F (2002) Preavalanche instabilities in a granular pile. Phys Rev Lett 89(1):204,302

    Article  Google Scholar 

  55. Stoller RE, Zinkle SJ (2000) On the relationship between uniaxial yield strength and resolved shear stress in polycrystalline materials. J Nucl Mater 283–287(PART I):349–352

    Article  Google Scholar 

  56. Taboada A, Chang KJ, Radjai F, Bouchette F (2005) Rheology, force transmission, and shear instabilities in frictional granular media from biaxial numerical tests using the contact dynamics method. J Geophys Res B 110(9):1–24

  57. Topin V, Monerie Y, Perales F, Radjai F (2012) Collapse dynamics and runout of dense granular materials in a fluid. Phys Rev Lett 109(18):1–5

    Article  Google Scholar 

  58. Tsoungui O, Vallet D, Charmet JC (1999) Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol 105(1–3):190–198

    Article  Google Scholar 

  59. Moreau JJ (1997) Numerical investigation of shear zones in granular materials. In: Wolf D, Grassberger P (eds) Friction, arching, contact dynamics. World Scientific, Singapore

    Google Scholar 

  60. Wu S, Chau K (2006) Dynamic response of an elastic sphere under diametral impacts. Mech Mater 38:1039–1060

    Article  Google Scholar 

  61. Zhou W, Yang L, Ma G, Chang X, Cheng Y, Li D (2015) Macro-micro responses of crushable granular materials in simulated true triaxial tests. Granular Matter 17(4):497–509

    Article  Google Scholar 

  62. Zubelewicz A, Bažant ZP (1987) Interface element modeling of fracture in aggregate composites. J Eng Mech 113(11):1619–1629

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a research grant awarded by the French Alternative Energies and Atomic Energy Commission (CEA). Farhang Radjai would also like to acknowledge the support of the ICoME2 Labex (ANR-11-LABX-0053) and the A*MIDEX projects (ANR-11-IDEX-0001-02) cofunded by the French program Investissements d’Avenir, managed by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Cantor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantor, D., Azéma, E., Sornay, P. et al. Three-dimensional bonded-cell model for grain fragmentation. Comp. Part. Mech. 4, 441–450 (2017). https://doi.org/10.1007/s40571-016-0129-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-016-0129-0

Keywords

Navigation