Skip to main content
Log in

Dense packing of general-shaped particles using a minimization technique

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The discrete element method (DEM) is a numerical method that has achieved general acceptance as an alternative tool to model discontinuous media, with a wide range of practical applications. Given that spheres are not always a suitable shape for DEM simulations, other particle shapes need to be used. However, for shapes different from spheres, there are not many advancing front packing algorithms, which are, in many cases, the best algorithms that allow obtaining an appropriate initial set of particles for a DEM simulation. This lack of advancing front packing algorithms for shapes different from spheres is mostly due to the difficulty of solving the problem of placing a mobile particle in contact with other two (in 2D) or three (in 3D) particles. In this paper, a new method for solving the problem of the particle in contact is proposed, and it is compared with the well-established wrappers method. It is shown that the new proposed method is a promising alternative for spherocylinders. For other shapes the formulation of the new method is shown to be correct, but it was clearly outperformed by the wrappers method and the efficiency of the proposed formulation needs to be improved by optimizing the solution procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. DEM Solutions. Engineering with confidence (2014). http://www.dem-solutions.com. Accessed 14 July 2014

  2. ITASCA Consulting Group, Inc. (2014) PFC general purpose distinct-element modeling framework. http://www.itascacg.com/software/pfc. Accessed 14 July 2014

  3. Smilauer V, Catalano E, Chareyre B, Dorofenko S, Duriez J, Gladky A, Kozicki J, Modenese C, Scholtès L, Sibille L, Stránský J, Thoeni K (2010) Yade Documentation, 1st edn. The Yade Project

  4. LIGGGHTS Open Source Discrete Element Method Particle Simulation Code. http://www.cfdem.com/liggghts-open-source-discrete-element-method-particle-simulation-code. Accessed Nov 2015

  5. ESyS-Particle. https://launchpad.net/esys-particle. Accessed Nov 2015

  6. Abraham CL, Maas SA, Weiss JA, Ellis BJ, Peters CL, Anderson AE (2013) A new discrete element analysis method for predicting hip joint contact stresses. J Biomech 46(6):1121–1127

    Article  Google Scholar 

  7. Dang HK, Meguid MA (2013) An efficient finite-discrete element method for quasi-static nonlinear soil-structure interaction problems. Int J Numer Anal Methods Geomech 37(2):130–149

    Article  Google Scholar 

  8. Hahn M, Bouriga M, Kröplin B-H, Wallmersperger T (2013) Life time prediction of metallic materials with the discrete-element-method. Comput Mater Sci 71:146–156

    Article  Google Scholar 

  9. Hassanpour A, Pasha M, Susana L, Rahmanian N, Santomaso AC, Ghadiri M (2013) Analysis of seeded granulation in high shear granulators by discrete element method. Powder Technol 238:50–55

    Article  Google Scholar 

  10. Li X, Yu H-S, Li X-S (2013) A virtual experiment technique on the elementary behaviour of granular materials with discrete element method. Int J Numer Anal Methods Geomech 37(1):75–96

    Article  Google Scholar 

  11. Lim K-W, Andrade JE (2014) Granular element method for three-dimensional discrete element calculations. Int J Numer Anal Methods Geomech 38:167–188

    Article  Google Scholar 

  12. Nakamura H, Fujii H, Watano S (2013) Scale-up of high shear mixer-granulator based on discrete element analysis. Powder Technol 236:149–156

    Article  Google Scholar 

  13. Pennec F, Alzina A, Tessier-Doyen N, Nait-ali B, Mati-Baouche N, Baynast HD, Smith DS (2013) A combined finite-discrete element method for calculating the effective thermal conductivity of bio-aggregates based materials. Int J Heat Mass Transf 60:274–283

    Article  Google Scholar 

  14. Bourrier F, Kneib F, Chareyre B, Fourcaud T (2013) Discrete modeling of granular soils reinforcement by plant roots. Ecol Eng 61(C):646–657

    Article  Google Scholar 

  15. Catalano E, Chareyre B, Barthélémy E (2014) Pore-scale modeling of fluid-particles interaction and emerging poromechanical effects. Int J Numer Anal Methods Geomech 38:51–71

    Article  Google Scholar 

  16. Duriez J, Darve F, Donzé FV (2013) Incrementally non-linear plasticity applied to rock joint modelling. Int J Numer Anal Methods Geomech 37:453–477

    Article  Google Scholar 

  17. Epifancev K, Nikulin A, Kovshov S, Mozer S, Brigadnov I (2013) Modeling of peat mass process formation based on 3D analysis of the screw machine by the code yade. Am J Mech Eng 1:73–75

    Article  Google Scholar 

  18. Grujicic M, Snipes JS, Ramaswami S, Yavari R (2013) Discrete element modeling and analysis of structural collapse/survivability of a building subjected to improvised explosive device (IED) attack. Adv Mater Sci Appl 2:9–24

    Google Scholar 

  19. Hadda N, Nicot F, Bourrier F, Sibille L, Radjai F, Darve F (2013) Micromechanical analysis of second order work in granular media. Granul Matter 15:221–235

    Article  Google Scholar 

  20. Hilton JE, Tordesillas A (2013) Drag force on a spherical intruder in a granular bed at low froude number. Phys Rev E 88:062203

    Article  Google Scholar 

  21. Lominé F, Scholtès L, Sibille L, Poullain P (2013) Modelling of fluid-solid interaction in granular media with coupled LB/DE methods: application to piping erosion. Int J Numer Anal Methods Geomech 37:577–596

    Article  Google Scholar 

  22. Nicot F, Hadda N, Darve F (2013) Second-order work analysis for granular materials using a multiscale approach. Int J Numer Anal Methods Geomech 37(17):2987–3007

    Article  Google Scholar 

  23. Nicot F, Hadda N, Guessasma M, Fortin J, Millet O (2013) On the definition of the stress tensor in granular media. Int J Solids Struct 50(14–15):2508–2517

    Article  Google Scholar 

  24. Scholtès L, Donzé FV (2013) A DEM model for soft and hard rocks: role of grain interlocking on strength. J Mech Phys Solids 61:352–369

    Article  Google Scholar 

  25. Thoeni K, Lambert C, Giacomini A, Sloan SW (2013) Discrete modelling of hexagonal wire meshes with a stochastically distorted contact model. Comput Geotech 49:158–169

    Article  Google Scholar 

  26. Tran VDH, Meguid MA, Chouinard LE (2013) A finite-discrete element framework for the 3D modeling of geogrid-soil interaction under pullout loading conditions. Geotext Geomembr 37:1–9

    Article  Google Scholar 

  27. Mohammadi S (2003) Discontinuum mechanics using finite and discrete elements. WIT Press, Southampton

    MATH  Google Scholar 

  28. Smilauer V, Catalano E, Chareyre B, Dorofenko S, Duriez J, Gladky A, Kozicki J, Modenese C, Scholtès L, Sibille L, Stránský J, Thoeni K (2010) Yade Reference Documentation. Yade Documentation, 1st edn. The Yade Project

  29. Smilauer V, Gladky A, Kozicki J, Modenese C, Stránský J (2010) Yade using and programming. Yade Documentation, 1st edn. The Yade Project

  30. Van Liedekerke P, Tijskens E, Dintwa E, Anthonis J, Ramon H (2006) A discrete element model for simulation of a spinning disc fertilizer spreader I. Single particle simulations. Powder Technol 170(2):71–85. doi:10.1016/j.powtec.2006.07.024

    Article  Google Scholar 

  31. Han K, Feng YT, Owen DRJ (2006) Polygon-based contact resolution for superquadrics. Int J Numer Methods Eng 66:485–501. doi:10.1002/nme.1569

    Article  MATH  Google Scholar 

  32. Pournin L (2005) On the behavior of spherical and non-spherical grain assemblies, its modeling and numerical simulation. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne

  33. Cheng YF, Guo SJ, Lai HY (2000) Dynamic simulation of random packing of spherical particles. Powder Technol 107(1–2):123–130

  34. Jia X, Williams RA (2001) A packing algorithm for particles of arbitrary shapes. Powder Technol 120(3):175–186

    Article  Google Scholar 

  35. Han K, Feng YT, Owen DRJ (2005) Sphere packing with a geometric based compression algorithm. Powder Technol 155(1):33–41

  36. Mueller GE (2005) Numerically packing spheres in cylinders. Powder Technol 159(2):105–110

    Article  Google Scholar 

  37. Fraige FY, Langston PA, Chen GZ (2008) Distinct element modelling of cubic particle packing and flow. Powder Technol 186(3):224–240

    Article  Google Scholar 

  38. Benabbou A, Borouchaki H, Laug P, Lu J (2010) Numerical modeling of nanostructured materials. Finite Elem Anal Des 46(1–2):165–180

  39. Bagi K (2005) An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul Matter 7:31–43

    Article  MATH  Google Scholar 

  40. Feng YT, Han K, Owen DRJ (2002) An advancing front packing of polygons, ellipses and spheres. Paper presented at the discrete element methods, numerical modeling of discontinua, Santa Fe

  41. Feng YT, Han K, Owen DRJ (2003) Filling domains with disks: an advancing front approach. Int J Numer Methods Eng 56:699–713. doi:10.1002/nme.583

    Article  MATH  Google Scholar 

  42. Valera R, Morales I, Vanmaercke S, Morfa C, Cortés L, Casañas H-G (2015) Modified algorithm for generating high volume fraction sphere packings. Comput Part Mech 2(2):1–12. doi:10.1007/s40571-015-0045-8

    Google Scholar 

  43. Pérez Morales I, Roselló Valera R, Recarey Morfa C, Cerrolaza M (2011) Particle-packaging for computational modeling of bone. CMES: Comput Model Eng Sci 79(3):183–200

    Google Scholar 

  44. Pérez Morales I, Pérez Brito Y, Cerrolaza M, Recarey Morfa C (2010) Un Nuevo Método de Empaquetamiento de Partículas: Aplicaciones en el Modelado del Tejido óseo. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 26(4):305–315

    Google Scholar 

  45. Löhner R, Oñate E (2004) A general advancing front technique for filling space with arbitrary objects. Int J Numer Methods Eng 61:1977–1991. doi:10.1002/nme.1068

    Article  MathSciNet  MATH  Google Scholar 

  46. Weisstein EW (2015) Kepler Conjecture. Wolfram MathWorld. http://mathworld.wolfram.com/KeplerConjecture.html. Accessed Nov 2015

  47. Weisstein EW (2015) Apollonius Circle. Wolfram MathWorld. http://mathworld.wolfram.com/KeplerConjecture.html. Accessed Nov 2015

  48. Bagi K (2005) An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul Matter 7:31–43. doi:10.1007/s10035-004-0187-5

    Article  MATH  Google Scholar 

  49. Feng YT, Han K, Owen DRJ (2002) An advancing front packing of polygons, ellipses and spheres. In: Cook BK, Jensen RP (eds) Discrete element methods. Numerical modeling of discontinua, Santa Fe, Sept 23–25 2002. Geotechnical Special Publication. American Society of Civil Engineers, pp 93–98

  50. Benabbou A, Borouchaki H, Laug P, Lu J (2009) Geometrical modeling of granular structures in two and three dimensions. Application to nanostructures. Int J Numer Methods Eng 80(4):425–454. doi:10.1002/nme.2644

    Article  MATH  Google Scholar 

  51. Labra C, Oñate E (2008) High-density sphere packing for discrete element method simulations. Communications in Numerical Methods in Engineering. doi:10.1002/cnm.1193

  52. Hernández Ortega JA (2003) Simulación numérica de procesos de llenado mediante elementos discretos. Polytechnic University of Catalonia

  53. Pérez Morales I (2012) Método de Elementos Discretos: desarrollo de técnicas novedosas para la modelación con métodos de partículas. Universidad Central Marta Abreu de Las Villas, Santa Clara

    Google Scholar 

  54. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  MathSciNet  MATH  Google Scholar 

  55. NLopt Algorithms (2015). http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms#Nelder-Me...1. Accessed 21 July 2015

  56. Hogue C (1998) Shape representation and contact detection for discrete element simulations of arbitrary geometries. Eng Comput 15(3):374–390

    Article  MATH  Google Scholar 

  57. Sohn K-A, Juttler B, Kim M-S, Wang W (2002) Computing distances between surfaces using line geometry. Paper presented at the proceedings 10th Pacific conference on computer graphics and applications, 9–11 Oct 2002

  58. Portal R, Sousa L, Dias J (2010) Contact detection between convex superquadric surfaces. Arch Mech Eng LVII 2:165–186. doi:10.2478/v10180-010-0009-8

    Google Scholar 

  59. Eberly D (2015) Geometric Tools. http://www.geometrictools.com/Documentation/Documentation.html. Accessed Nov 2015

  60. Price K, Storn R (1997) Differential evolution: a simple evolution strategy for fast optimization. Dr Dobb’s J 264:18–24

    MATH  Google Scholar 

  61. Ingber L (1993) Simulated annealing: practice versus theory. Math Comput Model 18(11):29–57. doi:10.1016/0895-7177(93)90204-C

Download references

Acknowledgments

The authors are deeply grateful to the CAPES project 208/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irvin Pérez Morales.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (enl 48 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez Morales, I., Roselló Valera, R., Recarey Morfa, C. et al. Dense packing of general-shaped particles using a minimization technique. Comp. Part. Mech. 4, 165–179 (2017). https://doi.org/10.1007/s40571-016-0103-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-016-0103-x

Keywords

Navigation