Skip to main content
Log in

A DEM contact model for history-dependent powder flows

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Die filling is an important part of the powder handling process chain that greatly influences the characteristic structure and properties of the final part. Predictive modelling and simulation of the die-filling process can greatly contribute to the optimization of the part and the whole production procedure, e.g. by predicting the resulting powder compaction structure as a function of filling process parameters. The rheology of powders can be very difficult to model especially if heterogeneous agglomeration or time-dependent consolidation effects occur. We present a new discrete element contact force model that enables modelling complex powder flow characteristics including direct time-dependent consolidation effects and load history-dependent cohesion to describe the filling process of complex, difficult to handle powders. The model is demonstrated for simple flow and an industrial powder flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brewin PR, Coube O, Doremus P, Tweed JH (eds) (2008) Modelling of powder die compaction. Springer, London

    Google Scholar 

  2. German RM (1996) Sintering theory and practice. Wiley-VCH, New-York

    Google Scholar 

  3. Bierwisch C, Kraft T, Riedel H, Moseler M (2009) Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling. J Mech Phys Solids 57:10–31. doi:10.1016/j.jmps.2008.10.006

    Article  MATH  Google Scholar 

  4. Bierwisch C, Kraft T, Riedel H, Moseler M (2009) Die filling optimization using three-dimensional discrete element modeling. Powder Technol 196:169–179. doi:10.1016/j.powtec.2009.07.018

    Article  MATH  Google Scholar 

  5. Guo Y, Wu CY, Kafui KD, Thornton C (2010) Numerical analysis of density-induced segregation during die filling. Powder Technol 197:111–119. doi:10.1016/j.powtec.2009.09.003

    Article  Google Scholar 

  6. Tomas J (2001) Assessment of mechanical properties of cohesive particulate solids. Part 2: powder flow criteria. Part Sci Technol 19:111–129. doi:10.1080/02726350152772065

    Article  Google Scholar 

  7. Tomas J (2003) The mechanics of dry, cohesive powders. Powder Handl Process 15:296–314

    Google Scholar 

  8. Thakur SC, Morrissey JP, Sun J et al (2014) Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granul Matter 16:383–400. doi:10.1007/s10035-014-0506-4

    Article  Google Scholar 

  9. Coube O, Cocks ACF, Wu C-Y (2005) Experimental and numerical study of die filling, powder transfer and die compaction. Powder Metall 48:68–76. doi:10.1179/003258905X37585

    Article  Google Scholar 

  10. Kraft T, Riedel H (2002) Numerical simulation of die compaction and sintering. Powder Metall 45:227–231. doi:10.1179/003258902225006989

    Article  Google Scholar 

  11. Coube O, Riedel H (2000) Numerical simulation of metal powder die compaction with special consideration of cracking. Powder Metall 43:123–131. doi:10.1179/003258900665871

    Article  Google Scholar 

  12. Guo Z, Chen X, Liu H et al (2014) Effect of storage time on the flowability of biomass-coal granular system. Fuel Process Technol 125:59–66. doi:10.1016/j.fuproc.2014.03.030

    Article  Google Scholar 

  13. Tomas J (2004) Fundamentals of cohesive powder consolidation and flow. Granul Matter 6:75–86. doi:10.1007/s10035-004-0167-9

    Article  MATH  Google Scholar 

  14. Oñate E, Celigueta MA, Latorre S, Casas G, Jerzy Rojek RR (2014) Lagrangian analysis of multiscale particulate flows with the particle finite element method. Comput Particle Mech 1:85–102. doi:10.1007/s40571-014-0012-9

    Article  Google Scholar 

  15. Rojek J, Labra C, Su O, Oñate E (2012) Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters. Int J Solids Struct 49:1497–1517. doi:10.1016/j.ijsolstr.2012.02.032

    Article  Google Scholar 

  16. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65. doi:10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  17. Cante JC, Riera MD, Oliver J et al (2010) Flow regime analyses during the filling stage in powder metallurgy processes: experimental study and numerical modelling. Granul Matter 13:79–92. doi:10.1007/s10035-010-0225-4

    Article  Google Scholar 

  18. Oñate E, Franci A, Carbonell JM (2014) A particle finite element method for analysis of industrial forming processes. Comput Mech 54:85–107. doi:10.1007/s00466-014-1016-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu CY, Cocks aCF (2006) Numerical and experimental investigations of the flow of powder into a confined space. Mech Mater 38:304–324. doi:10.1016/j.mechmat.2005.08.001

    Article  Google Scholar 

  20. Tomas J (2007) Adhesion of ultrafine particles–a micromechanical approach. Chem Eng Sci 62:1997–2010. doi:10.1016/j.ces.2006.12.055

    Article  Google Scholar 

  21. Tykhoniuk R, Tomas J, Luding S et al (2007) Ultrafine cohesive powders: from interparticle contacts to continuum behaviour. Chem Eng Sci 62:2843–2864. doi:10.1016/j.ces.2007.02.027

  22. Breinlinger T, Hashibon A, Kraft T (2015) Simulation of the influence of surface tension on granule morphology during spray drying using a simple capillary force model. Powder Technol 283:1–8. doi:10.1016/j.powtec.2015.05.009

    Article  Google Scholar 

  23. Breinlinger T, Hashibon A, Kraft T (2015) Simulation of the spray drying of single granules: the correlation between microscopic forces and granule morphology. J Am Ceram Soc 9:1778–1786. doi:10.1111/jace.13557

    Article  Google Scholar 

  24. Wu CY, Cocks ACF, Gillia OT, Thompson Da (2003) Experimental and numerical investigations of powder transfer. Powder Technol 138:216–228. doi:10.1016/j.powtec.2003.09.011

    Article  Google Scholar 

  25. Derjaguin B, Muller V, Toporov Y (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53:314–326. doi:10.1016/0021-9797(75)90018-1

    Article  Google Scholar 

  26. Luding S (2006) Cohesive, frictional powders : contact models for tension. Granul Matter 10:235. doi:10.1007/s10035-008-0099-x

    Article  MATH  Google Scholar 

  27. Thornton C, Ning Z (1998) A theoretical model for the stick/bounce behaviour of adhesive, elastic–plastic spheres. Powder Technol 99:154–162. doi:10.1016/S0032-5910(98)00099-0

    Article  Google Scholar 

  28. Guo Y, Curtis JS (2015) Discrete element method simulations for complex granular flows. Annu Rev Fluid Mech 47:21–46. doi:10.1146/annurev-fluid-010814-014644

    Article  Google Scholar 

  29. Hertz H (1881) On the contact of elastic solids. J Reine Angew Math 92:156–171

    MathSciNet  MATH  Google Scholar 

  30. Johnson KL, Kendall K, Roberts AD, Johnsont KL (1971) Surface energy and the contact of elastic solids. Source Proc R Soc London Ser A, Math Phys Sci 324:301–313

    Article  Google Scholar 

  31. Tomas J (2001) Assessment of mechanical properties of cohesive particulate solids—part 1: particle contact constitutive model. Part Sci Technol 19:95

    Article  Google Scholar 

  32. Johnson KL (1985) Contact mechanics. J Am Chem Soc 37:1–17. doi:10.1115/1.3261297

    MATH  Google Scholar 

  33. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, San Diego

    Google Scholar 

  34. Weuster A, Brendel L, Wolf DE (2013) Simulation of sheared, caking powder. In: AIP Conference Proceedings of 7th International Conference in Micromechanics Granul Media (Powders Grains) Locat Sydney, Aust Date JUL 08–12, 2013 515:515–518. doi:10.1063/1.4811981

  35. Landau LD, Pitaevskii LP, Kosevich AM, Lifshitz EM (1986) Theory of elasticity, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  36. http://www.simpartix.com/

  37. Glöß B, Fries M, Michaelis A, Analyse des Matrizenfüllprozesses beim uniaxialen Trockenpressen mittels einer integrierten Versuchsmethode. Prep

Download references

Acknowledgments

This work has been funded by the Federal Ministry of Economics and Technology (BMWi) via the German Federation of Industrial Research Associations “Otto von Guericke“ e.V. (AiF) (IGF-Nr.: 430 ZBG) and by the IPROCOM Marie Curie initial training network, funded through the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007–2013/ under REA Grant Agreement No. 316555. This research has also been partially supported by the EU FP7 Project SimPhoNy (Grant Number 604005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adham Hashibon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashibon, A., Schubert, R., Breinlinger, T. et al. A DEM contact model for history-dependent powder flows. Comp. Part. Mech. 3, 437–448 (2016). https://doi.org/10.1007/s40571-015-0099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-015-0099-7

Keywords

Navigation