Advertisement

Computational Particle Mechanics

, Volume 3, Issue 1, pp 43–52 | Cite as

Warm starting the projected Gauss–Seidel algorithm for granular matter simulation

  • Da Wang
  • Martin Servin
  • Tomas Berglund
Article

Abstract

The effect on the convergence of warm starting the projected Gauss–Seidel solver for nonsmooth discrete element simulation of granular matter are investigated. It is found that the computational performance can be increased by a factor 2–5.

Keywords

Discrete elements Nonsmooth contact dynamics Convergence Warm starting Projected Gauss–Seidel 

Notes

Acknowledgments

This project was supported by Algoryx Simulations, LKAB, UMIT Research Lab and VINNOVA (dnr 2014-01901).

Supplementary material

Supplementary material 1 (mp4 187696 KB)

40571_2015_88_MOESM2_ESM.mp4 (7.8 mb)
Supplementary material 2 (mp4 8028 KB)
40571_2015_88_MOESM3_ESM.mp4 (7.9 mb)
Supplementary material 3 (mp4 8068 KB)

References

  1. 1.
    Moreau JJ (1999) Numerical aspects of the sweeping process. Comput Methods Appl Mech Eng 177:329–349CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177:235–257CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Radjai Farhang, Richefeu Vincent (2009) Contact dynamics as a nonsmooth discrete element method. Mech Mater 41(6):715–728CrossRefGoogle Scholar
  4. 4.
    Brogliato B, Ten Dam A, Paoli L, Génot F, Abadie M (2002) Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl Mech Rev 55(2):107–150CrossRefGoogle Scholar
  5. 5.
    Unger T, Brendel L, Wolf D, Kertsz J (2002) Elastic behavior in contact dynamics of rigid particles. Phys Rev E 65(6):7CrossRefGoogle Scholar
  6. 6.
    Servin M, Wang D, Lacoursière C, Bodin K (2014) Examining the smooth and nonsmooth discrete element approach to granular matter. Int J Numer Methods Eng 97:878–902CrossRefGoogle Scholar
  7. 7.
    Precklik T, Rude U (2015) Ultrascale simulations of non-smooth granular dynamics. Comput Part Mech. doi: 10.1007/s40571-015-0047-6
  8. 8.
    Visseq V, Alart P, Dureisseix D (2013) High performance computing of discrete nonsmooth contact dynamics with domain decomposition. Int J Numer Methods Eng 96(9):584598CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kaufman D, Sueda S, James D, Pai D (2008) Staggered projections for frictional contact in multibody systems. ACM Trans Gr 27(5):164:1–164:11CrossRefGoogle Scholar
  10. 10.
    Kaufman D (2009) Coupled principles for computational frictional contact mechanics. DissertationGoogle Scholar
  11. 11.
    Erleben K (2013) Numerical methods for linear complementarity problems in physics-based animation. ACM SIGGRAPH 2013 Courses 8:1–42Google Scholar
  12. 12.
    Moravnszky A, Terdiman P (2004) Fast contact reduction for dynamics simulation. In: Kirmse A (eds) Game programming gems, 4th edn. Charles River Media, Boston, pp 253–263Google Scholar
  13. 13.
    Todorov E (2010) Implicit nonlinear complementarity: A new approach to contact dynamics. In: 2010 IEEE international conference on robotics and automation (ICRA), pp 2322–2329Google Scholar
  14. 14.
    Lacoursière C (2007) Regularized, stabilized, variational methods for multibodies. In: Peter Bunus DF, Führer C (eds) The 48th scandinavian conference on simulation and modeling (SIMS 2007). Linköping University Electronic Press, pp 40–48Google Scholar
  15. 15.
    Algoryx Simulations. AGX Dynamics, December 2014Google Scholar
  16. 16.
    Wang D, Servin M, Berglund T, Mickelsson K-O, Rnnbck S (2015) Parametrization and validation of a nonsmooth discrete element method for simulating flows of iron ore green pellets. Powder Technol 283:475–487CrossRefGoogle Scholar

Copyright information

© OWZ 2015

Authors and Affiliations

  1. 1.Umeå UniversityUmeåSweden
  2. 2.Algoryx Simulation ABUmeåSweden

Personalised recommendations