Skip to main content
Log in

How large grains increase bulk friction in bi-disperse granular chute flows

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In this contribution, we apply contact dynamics discrete simulations to explore how the mechanical properties of simple bi-dimensional granular chute flows are affected by the existence of two grain sizes. Computing partial stress tensors for the phases of small and large grains, we show that the phase of large grain exhibits a much larger shear strength than the phase of small grains. This difference translates in terms of the flow internal friction: adopting the \(\mu (I)\) dependence to describe the flow frictional properties, we establish that the flow mean friction coefficient increases with the volume fraction of large grains. Hence, while the presence of large grains may induce lubrication in 3D unconfined flows due to the self-channelisation and levées formation, the effect of large grains on the bulk properties is to decrease the flow mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berton G, Delannay R, Richard P, Taberlet N, Valance A (2003) Two-dimensional inclined chute flows: transverse motion and segregation. Phys Rev E 68:051303

    Article  Google Scholar 

  2. Bridgewater J, Foo WS, Stephens DJ (1985) Particle mixing and segregation in failure zones—theory and experiment. Powder Technol 41:147–158

    Article  Google Scholar 

  3. Deboeuf S, Lajeunesse E, Dauchot O, Andreotti B (2005) Flow rule, self-channelization, and levees in unconfined granular flows. Phys Rev Lett 97–15:158303

    Google Scholar 

  4. Degaetano M, Lacaze L, Phillips JC (2013) The influence of localised size reorganisation on short-duration bidispersed granular flows. Eur Phys J E 36–4:1–9

    Google Scholar 

  5. Fan Y, Hill KM (2011) Phase transitions in shear-induced segregation of granular materials. Phys Rev Lett 106:218301

    Article  Google Scholar 

  6. Félix G, Thomas N (2004) Relation between dry granular flow regimes and morphology of deposits: formation of leves in pyroclastic deposits. Earth Planet Sci Lett 221:197–213

    Article  Google Scholar 

  7. Frey P, Church M (2009) How river beds move. Science 325:1509–1510

    Article  Google Scholar 

  8. Garzo V, Reyes FV (2012) Segregation of an intruder in a heated granular dense gas. Phys Rev E 85:021308

    Article  Google Scholar 

  9. Golick LA, Daniels KE (2009) Mixing and segregation rates in sheared granular materials. Phys Rev E 80:042301

    Article  Google Scholar 

  10. Goujon C, Dalloz-Dubrujeaud B, Thomas N (2003) Monodisperse dry granular flows on inclined planes: role of roughness. Eur Phys J E 11:147–157

    Article  Google Scholar 

  11. Goujon C, Dalloz-Dubrujeaud B, Thomas N (2007) Bidisperse granular avalanches on inclined planes: a rich variety of behaviors. Eur Phys J E 23:199–215

    Article  Google Scholar 

  12. Gray JMNT, Thornton AR (2005) A theory for particle size segregation in shallow granular free-surface flows. Proc R Soc A 461:1447–1473

    Article  MathSciNet  MATH  Google Scholar 

  13. Gray JMNT, Chugunov VA (2006) Particle-size segregation and diffusive remixing in shallow granular avalanches. J Fluid Mech 569:365–398

    Article  MathSciNet  MATH  Google Scholar 

  14. Gray JMNT, Kokelaar BP (2010) Large particle segregation, transport and accumulation in granular free-surface flows. J Fluid Mech 652:105–137

    Article  MathSciNet  MATH  Google Scholar 

  15. Guillard F, Forterre Y, Pouliquen O (2013) Depth-independent drag force induced by stirring in granular media. Phys Rev Lett 110:138303

    Article  Google Scholar 

  16. Guillard F, Forterre Y, Pouliquen O (2014) Lift forces in granular media. Phys Fluids 26:043301

    Article  Google Scholar 

  17. Hill KM, Tan DS (2014) Segregation in dense sheared flows: gravity, temperature gradients, and stress partitioning. J Fluid Mech 756:54–88

    Article  MathSciNet  Google Scholar 

  18. Jean M, Moreau J-J (1992) Unilaterality and dry friction in the dynamics of rigid bodies collections. In Curnier A (ed) Proceedings of contact mechanics international symposium, pp 31–48

  19. Johnson CG, Kokelaar BP, Iverson RM, Logan M, LaHusen RG, Gray JMNT (2012) Grain-size segregation and levee formation in geophysical mass flows. J Geophys Res 117:F01032

    Google Scholar 

  20. Kudrolli A (2004) Size separation in vibrated granular matter. Rep Prog Phys 67:209–247

    Article  Google Scholar 

  21. Linares-Guerrero E, Goujon C, Zenit R (2007) Increased mobility of bidisperse granular avalanches. J Fluid Mech 593:475–504

    Article  MATH  Google Scholar 

  22. Marks B, Rognon P, Einav I (2012) Grainsize dynamics of polydisperse granular segregation down inclined planes. J Fluid Mech 690:499511

    Article  MathSciNet  MATH  Google Scholar 

  23. May LBH, Golick LA, Phillips KC, Shearer M, Daniels KE (2010) Shear-driven size segregation of granular materials: modeling and experiment. Phys Rev E 81:051301

    Article  Google Scholar 

  24. Meruane C, Tamburrino A, Roche O (2012) Dynamics of dense granular flows of small-and-large-grain mixtures in an ambient fluid. Phys Rev E 86:026311

    Article  Google Scholar 

  25. Midi G (2004) On dense granular flows. Eur Phys J E 14–4:341–365

    Article  Google Scholar 

  26. Moreau JJ (1994) Some numerical methods in multibody dynamics: application to granular materials. Eur J Mech A Solids 13–4:93–114

    MathSciNet  MATH  Google Scholar 

  27. Moro F, Faug T, Bellot H, Ousset F (2010) Large mobility of dry snow avalanches: insights from small-scale laboratory tests on granular avalanches of bidisperse materials. Cold Reg Sci Technol 62:55–66

  28. Phillips JC, Hogg AJ, Kerswell RR, Thomas NH (2006) Enhanced mobility of granular mixtures of fine and coarse particles. Earth Planet Sci Lett 246:466–480

  29. Pouliquen O, Delour J, Savage SB (1997) Fingering in granular chute flows. Nature 386:816–817

    Article  Google Scholar 

  30. Pouliquen O (1999) Scaling laws in granular flows down rough inclined planes. Phys Fluids 11:542

    Article  MathSciNet  MATH  Google Scholar 

  31. Powell DM (1998) Patterns and processes of sediment sorting in gravel-bed rivers. Prog Phys Geogr 22–1:1–32

    Article  Google Scholar 

  32. Radjai F, Dubois F (2011) Discrete numerical modeling of granular materials. In: Radjai F, Dubois F (eds) Wiley-Iste publishers, ISBN 978-1-84821-260-2

  33. Rognon PG, Roux J-N, Naaim M, Chevoir F (2007) Dense flows of bidisperse assemblies of disks down an inclined plane. Phys Fluids 19:058101-1

    Article  MATH  Google Scholar 

  34. Rothenburg L, Bathurst RJ (1989) Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39:601

    Article  Google Scholar 

  35. Rowley PJ, Kokelaar P, Menzies M, Waltham D (2011) Shear-derived mixing in dense granular flows. J Sediment Res 81:874–884

    Article  Google Scholar 

  36. Savage SB, Lun CKK (1988) Particle size segregation in inclined chute flow of dry cohesionless granular solids. J Fluid Mech 189:311–335

    Article  Google Scholar 

  37. Schröter M, Ulrich S, Kreft J, Swift JB, Swinney HL (2006) Mechanisms in the size segregation of a binary granular mixture. Phys Rev E 74:011307

    Article  Google Scholar 

  38. Staron L, Phillips JC (2014) Segregation time-scales in bi-disperse granular flows. Phys Fluids 26(3):033302

    Article  Google Scholar 

  39. Staron L, Phillips JC (2015) Stress partition and micro-structure in size-segregating granular flow. Phys Rev E 92:022210

    Article  Google Scholar 

  40. Thornton AR, Weinhart T, Luding S, Bokhove O (2012) Modeling of particle size segregation: calibration using the discrete particle method. Int J Mod Phys C 23:1240014

    Article  Google Scholar 

  41. Tripathi A, Khakhar DV (2011) Rheology of binary granular mixtures in the dense flow regime. Phys Fluids 23:113302

    Article  Google Scholar 

  42. Ulrich S, Schröter M, Swinney HL (2007) Influence of friction on granular segregation. Phys Rev E 76:042301

    Article  Google Scholar 

  43. Voivret C, Radjai F, Delenne J-Y, El Youssoufi MS (2009) Multiscale force networks in highly polydisperse granular media. Phys Rev Lett 102:178001

    Article  MATH  Google Scholar 

  44. Weinhart T, Luding S, Thornton AR (2013) From discrete particles to continuum fields in mixtures. AIP Conf Proc 1542:1202–1205

    Article  Google Scholar 

  45. Wiederseiner S, Andreini N, Épely-Chauvin G, Moser G, Monnereau M, Gray JMNT, Ancey C (2011) Experimental investigation into segregating granular flows down chutes. Phys Fluids 23:013301

    Article  Google Scholar 

  46. Yohannes B, Hill KM (2010) Rheology of dense granular mixtures: particle-size distributions, boundary conditions, and collisional time scales. Phys Rev E 82:061301

    Article  MathSciNet  Google Scholar 

  47. Zuriguel I, Gray JMNT, Peixinho J, Mullin T (2006) Pattern selection by a granular wave in a rotating drum. Phys Rev E 73:061302

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the FP7 European Grant IEF No. 297843.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydie Staron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staron, L., Phillips, J.C. How large grains increase bulk friction in bi-disperse granular chute flows. Comp. Part. Mech. 3, 367–372 (2016). https://doi.org/10.1007/s40571-015-0068-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-015-0068-1

Keywords

Navigation