Skip to main content
Log in

Electromagnetic excitation of particle suspensions in hydraulic fractures using a coupled lattice Boltzmann-discrete element model

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This paper describes the development of a computational framework that can be used to describe the electromagnetic excitation of rigid, spherical particles in suspension. In this model the mechanical interaction and kinematic behaviour of the particles is modelled using the discrete element method, while the surrounding fluid mechanics is modelled using the lattice Boltzmann method. Electromagnetic effects are applied to the particles as an additional set of discrete element forces, and the implementation of these effects was validated by comparison to the theoretical equations of point charges for Coulomb’s law and the Lorentz force equation. Oscillating single and multiple particle tests are used to investigate the sensitivity of particle excitation to variations in particle charge, field strength, and frequency. The further capabilities of the model are then demonstrated by a numerical illustration, in which a hydraulic fracture fluid is excited and monitored within a hydraulic fracture. This modelling explores the feasibility of using particle vibrations within the fracture fluid to aid in the monitoring of fracture propagation in unconventional gas reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ladd AJC (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271:285

    Article  MathSciNet  MATH  Google Scholar 

  2. Ladd AJC (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J Fluid Mech 271:311

    Article  MathSciNet  MATH  Google Scholar 

  3. Cook BK, Noble DR, Williams JR (2004) A direct simulation method for particle-fluid systems. Eng Comput 21(2/3/4):151

    Article  MATH  Google Scholar 

  4. Feng YT, Han K, Owen DRJ (2007) Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: computational issues. Int J Numer Methods Eng 72(9):1111

    Article  MathSciNet  MATH  Google Scholar 

  5. McNamara GR, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61(20):2332

  6. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30(1):329

    Article  MathSciNet  Google Scholar 

  7. Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511

  8. Chen H, Chen S, Matthaeus WH (1992) Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method. Phys Rev A 45(8):R5339

  9. Qian YH, D’Humieres D, Lallemand P (1992) Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17(6):479

    Article  MATH  Google Scholar 

  10. Owen DRJ, Leonardi CR, Feng YT (2011) An efficient framework for fluid-structure interaction using the lattice Boltzmann method and immersed moving boundaries. Int J Numer Methods Eng 87(1–5):66

    Article  MathSciNet  MATH  Google Scholar 

  11. Maier RS, Bernard RS, Grunau DW (1996) Boundary conditions for the lattice Boltzmann method. Phys Fluids 8(7):1788

  12. Hou S, Zou Q, Chen S, Doolen G, Cogley AC (1995) Simulation of cavity flow by the lattice Boltzmann method. J Comput Phys 118(2):329

  13. Sterling JD, Chen S (1996) Stability analysis of lattice Boltzmann methods. J Comput Phys 123(1):196

  14. Lallemand P, Luo LS (2000) Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys Rev E 61(6):6546

  15. Dellar PJ (2003) Incompressible limits of lattice Boltzmann equations using multiple relaxation times. J Comput Phys 190(2):351

  16. Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 9(6):1591

  17. Verberg R, Ladd AJC (2001) Accuracy and stability of a lattice-Boltzmann model with subgrid scale boundary conditions. Phys Rev E 65(1):1

  18. Latt J, Chopard B, Malaspinas O, Deville M, Michler A (2008) Straight velocity boundaries in the lattice Boltzmann method. Phys Rev E 77:056703

    Article  Google Scholar 

  19. Strack OE, Cook BK (2007) Three-dimensional immersed boundary conditions for moving solids in the lattice-Boltzmann method. Int J Numer Methods Fluids 55(2):103

    Article  MATH  Google Scholar 

  20. Williams J, O’Connor R (1999) Discrete element simulation and the contact problem. Arch Comput Methods Eng 6(4):279

    Article  MathSciNet  Google Scholar 

  21. Munjiza A, Andrews KRF (1998) NBS contact detection algorithm for bodies of similar size. Int J Numer Methods Eng 43(1):131

  22. Han K, Peric D, Owen DRJ, Yu J (2000) A combined finite/discrete element simulation of shot peening processes—Part II: 3D interaction laws. Eng Comput 17(6):680

    Article  MATH  Google Scholar 

  23. Johnson SM, Williams JR, Cook BK (2008) Quaternion-based rigid body rotation integration algorithms for use in particle methods. Int J Numer Methods Eng 74(8):1303

    Article  MathSciNet  MATH  Google Scholar 

  24. Verberg R, Ladd AJC (2000) Lattice-Boltzmann model with sub-grid-scale boundary conditions. Phys Rev Lett 84(10):2148

  25. Chun B, Ladd AJC (2007) Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. Physi Rev E 75(6):066705

  26. Aidun CK, Lu Y, Ding EJ (2000) Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J Fluid Mech 373(–1):287

    MATH  Google Scholar 

  27. Noble DR, Torczynski JR (1998) A lattice-Boltzmann method for partially saturated computational cells. Int J Mod Phys C 9(8): 1189

    Article  Google Scholar 

  28. Leonardi CR, Jones BD, Holmes DW, Williams JR (2013) Simulation of complex particle suspensions using coupled lattice Boltzmann-discrete element methods. In: Mustoe G (ed) DEM 6: Proceedings of the 6th international conference on discrete element methods and related techniques. pp. 1–8

  29. Holdych DJ (2003) Lattice boltzmann methods for diffuse and mobile interfaces. Ph.D. thesis, University of Illinois at Urbana-Champaign

  30. Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for complex flows. Annu Rev Fluid Mech 42(1):439

    Article  MathSciNet  MATH  Google Scholar 

  31. Ding EJ, Aidun CK (2003) Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact. J Stat Phys 112(3–4):685

    Article  MATH  Google Scholar 

  32. Nguyen NQ, Ladd AJC (2002) Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys Rev E 66:046708

    Article  Google Scholar 

  33. Hou LJ, Miskovic ZL, Piel A, Shukla PK (2009) Brownian dynamics of charged particles in a constant magnetic field. Physics of Plasmas 16(5):053705

  34. Jesus Vd, Guimaraes A, Oliveira I (1999) Classical and quantum mechanics of a charged particle in oscillating electric and magnetic fields. Braz J Phys 29:541

    Article  Google Scholar 

  35. Litvinenko Y (2003) Particle acceleration by a time-varying electric field in merging magnetic fields. Sol Phys 216(1–2):189

    Article  Google Scholar 

  36. Han K, Feng YT, Owen DRJ (2010) Three-dimensional modelling and simulation of magnetorheological fluids. Int J Numer Methods Eng 84(11):1273

    Article  MathSciNet  MATH  Google Scholar 

  37. Pappas Y, Klingenberg D (2006) Simulations of magnetorheological suspensions in Poiseuille flow. Rheol Acta 45(5):621

    Article  Google Scholar 

  38. Yiacoumi S, Rountree DA, Tsouris C (1996) Mechanism of particle flocculation by magnetic seeding. J Colloid Interface Sci 184(2):477

  39. Lindner J, Menzel K, Nirschl H (2013) Simulation of magnetic suspensions for HGMS using CFD, FEM and DEM modeling. Comput Chem Eng 54(0):111

  40. Hayt W, Buck J (2006) Engineering electromagnetics, 7th edn. McGraw-Hill, New York

    Google Scholar 

  41. Wolfson R (2007) Essential University Physics, vol 2. Pearson Addison Wesley, Boston

  42. Knight R (2008) Physics for scientists and engineers: a strategic approach. Pearson Addison Wesley, Boston

    Google Scholar 

  43. Zohdi T (2010) On the dynamics of charged electromagnetic particulate jets. Arch Comput Methods Eng 17(2):109

    Article  MathSciNet  MATH  Google Scholar 

  44. Zohdi TI (2012) Electromagnetic properties of multiphase dielectrics: a primer on modeling, theory and computation, vol 64, 1st edn. Springer, Berlin

  45. Zohdi TI (2012) Dynamics of charged particulate systems: modeling, theory and computation, vol 64, 1st edn. Springer, Berlin

    Book  MATH  Google Scholar 

  46. Zohdi TI (2013) Electromagnetically-induced vibration in particulate-functionalized materials. J Vib Acoust 135(3):031007

    Article  Google Scholar 

  47. Zohdi T (2014) Embedded electromagnetically sensitive particle motion in functionalized fluids. Comput Part Mech 1(1):27

    Article  Google Scholar 

  48. Mukherjee D, Zohdi TI (2014) Electromagnetic control of charged particulate spray systems—models for planning the spray-gun operations. Comput Aided Des 46:211. 2013. SIAM Conference on Geometric and Physical Modeling

  49. Mukherjee D, Zaky Z, Zohdi TI, Salama A, Sun S (2015) Investigation of guided-particle transport for noninvasive healing of damaged piping systems by use of electro-magneto-mechanical methods. SPE J: SPE-169639-PA

  50. Moniz EJ, Jacoby HD, Meggs AJM (2011) The future of natural gas an interdisciplinary mit study. Technical report, Massachusetts Institute of Technology Energy Initiative

  51. Bunger AP, McLennan J, Jeffrey R (eds) (2013) Effective and sustainable hydraulic fracturing. In: Tech. doi:10.5772/45724

  52. Song F, Kuleli H, Toksoz M, Ay E, Zhang H (2010) An improved method for hydrofracture-induced microseismic event detection and phase picking. Geophysics 75(6):A47

    Article  Google Scholar 

  53. Drew JE, Leslie HD, Armstrong PN, Michard G (2005) Automated microseismic event detection and location by continuous spatial mapping. In: Society of petroleum engineers annual technical conference. Society of Petroleum Engineers, SPE-95513-MS

  54. Sleefe G, Warpinski N, Engler B (1993) The use of broadband microseisms for hydraulic fracture mapping

  55. Kim DS, Lee JS (2000) Propagation and attenuation characteristics of various ground vibrations. Soil Dyn Earthq Eng 19(2):115

  56. Sone H, Zoback M (2013) Mechanical properties of shale-gas reservoir rocks—part 1: static and dynamic elastic properties and anisotropy. Geophysics 78(5):D381–D392

    Article  Google Scholar 

Download references

Acknowledgments

Aspects of the hydrodynamic coupling of the LBM and DEM were presented in part at the 6th International Conference on Discrete Element Methods (DEM6) in 2013. This work was supported in part by the MITei-Saudi Aramco Seed Fund Scheme and this is gratefully acknowledged by the authors

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Leonardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonardi, C.R., McCullough, J.W.S., Jones, B.D. et al. Electromagnetic excitation of particle suspensions in hydraulic fractures using a coupled lattice Boltzmann-discrete element model. Comp. Part. Mech. 3, 125–140 (2016). https://doi.org/10.1007/s40571-015-0035-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-015-0035-x

Keywords

Navigation