Sport-related physical activity in tourism: an analysis of antecedents of sport based applications use

Abstract

Wearable devices and mobile applications (hereafter referred to as apps) used in sport and physical activity have widely changed the way sport is practised. However, experts still understand little about the antecedents of tourists’ sport apps use. Drawing on the theory of reasoned action, this study examined attitudinal and norm-based factors that influence users’ continuance intention towards sport apps as predictors of use in trips. A questionnaire was designed based on the existing literature in order to collect the relevant data from centres and places for doing sport. The final sample consisted of 362 sport practitioners and users of sport apps, whose responses were used to test the model. The results indicate that all attitudinal factors (i.e. performance expectancy, effort expectancy, perceived satisfaction, perceived enjoyment and perceived gamification) and norm-based factors (i.e. social influences) affect users’ continuance intention towards Smart Internet of Things sport apps. In addition, the respondents’ continuance intention towards these apps affects their sport apps use in trips. Theoretical and managerial implications for the tourism industry are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Albarracin D, Johnson BT, Fishbein M, Muellerleile PA (2001) Theories of reasoned action and planned behavior as models of condom use: a meta-analysis. Psychol Bull 127(1):142

    Google Scholar 

  2. Asimakopoulos S, Asimakopoulos G, Spillers F (2017) Motivation and user engagement in fitness tracking: Heuristics for mobile healthcare wearables. Informatics. Multidisciplinary Digital Publishing Institute, Basel

    Google Scholar 

  3. Barclay D, Higgins C, Thompson R (1995) The partial least squares (PLS) approach to causal modeling: personal computer adoption and use as an illustration. Technol Stud 2(2):285–309

    Google Scholar 

  4. Benbasat I, Barki H (2007) Quo vadis, TAM? J Assoc Inform Syst 8(4):211–218

    Google Scholar 

  5. Bhattacherjee A (2001) Understanding information systems continuance: an expectation-confirmation model. MIS Q 25:351–370

    Google Scholar 

  6. Binyamin SS, Rutter MJ, Smith S (2018) The influence of computer self-efficacy and subjective norms on the students’ use of learning management systems at King Abdulaziz University. Int J Inform Educ Technol 8(10):693–699

    Google Scholar 

  7. Cepeda-Carrión G, Roldán JL (2004) Aplicando en la práctica la técnica PLS en la administración de empresas. En Conocimiento y Competitividad: Congreso ACEDE, Murcia. Murcia

  8. Chen SC, Yen DC, Hwang MI (2012) Factors influencing the continuance intention to the usage of Web 2.0: an empirical study. Comput Hum Behav 28(3):933–941

    Google Scholar 

  9. Dallinga J, Janssen M, Van Der Werf J, Walravens R, Vos S, Deutekom M (2018) Analysis of the features important for the effectiveness of physical activity–related apps for recreational sports: expert panel approach. JMIR mHealth uHealth 6(6):e143

    Google Scholar 

  10. Davis FD, Bagozzi RP, Warshaw PR (1992) Extrinsic and intrinsic motivation to use computers in the workplace 1. J Appl Soc Psychol 22(14):1111–1132

    Google Scholar 

  11. De Andalucía J (2017). Habitos y actitudes de la población andaluza ante el deporte 2017. Observatorio del Deporte Andaluz. Empresa Pública para la Gestión del Turismo y del Deporte de Andalucía. Consejería de Turismo y Deporte

  12. de Deportes CS (2010) Hábitos deportivos en España (IV). Centro de investigaciones sociológicas (CIS), (2.833)

  13. DeLone WH, McLean ER (1992) Information systems success: the quest for the dependent variable”. Inform Syst Res 3(1):60–95

    Google Scholar 

  14. Depper A, Howe PD (2017) Are we fit yet? English adolescent girls’ experiences of health and fitness apps. Health Sociol Rev 26(1):98–112

    Google Scholar 

  15. Dunn MS, Eddy JM, Wang MQ, Nagy S, Perko MA, Bartee RT (2001) The influence of significant others on attitudes, subjective norms and intentions regarding dietary supplement use among adolescent athletes. Adolescence-San Diego 36:583–592

    Google Scholar 

  16. Exceltur (2019) Plan renove de destinos turísticos españoles. Documento de bases. Recuperado de: https://www.exceltur.org/wp-content/uploads/2014/10/PLAN-RENOVE-DESTINOS-TURÍSTICOS-ESPAÑOLES.pdf

  17. Fishbein M, Ajzen A (1975) Beliefs, attitudes, intentions, and behavior: an introduction to theory and research. Addison-Wesley, Reading

    Google Scholar 

  18. Fornell C, Larcker DF (1981) Structural equation models with unobservable variables and measurement error: algebra and statistics. J Market Res 18:382–388

    Google Scholar 

  19. Glegg SM, Holsti L, Velikonja D, Ansley B, Brum C, Sartor D (2013) Factors influencing therapists' adoption of virtual reality for brain injury rehabilitation. Cyberpsychol Behav Soc Netw 16(5):385–401

    Google Scholar 

  20. Gretzel U, Sigala M, Xiang Z, Koo C (2015) Smart tourism: foundations and developments. Electron Markets 25(3):179–188

    Google Scholar 

  21. Hair JF, Ringle CM, Sarstedt M (2011) PLS-SEM: indeed a silver bullet. J Market Theory Pract 19(2):139–152

    Google Scholar 

  22. Hair JF, Sarstedt M, Hopkins L, Kuppelwieser VG (2014) Partial least squares structural equation modeling (PLS-SEM): an emerging tool in business research. Eur Bus Rev 26(2):106–121

    Google Scholar 

  23. Hazen T, Kung B, Cegielski G, Jones-Farmer A (2014) Performance expectancy and use of enterprise architecture: training as an intervention. J Enterp Inform Manag 27(2):180–196

    Google Scholar 

  24. He Z, Wu L, Li XR (2018) When art meets tech: the role of augmented reality in enhancing museum experiences and purchase intentions. Tour Manag 68:127–139

    Google Scholar 

  25. Henseler J, Ringle C, Sinkovics R (2009) The use of partial of least square path modeling in international marketing. Adv Int Market 20:227–320

    Google Scholar 

  26. Hsiao CH, Chang JJ, Tang KY (2016) Exploring the influential factors in continuance usage of mobile social apps: satisfaction, habit, and customer value perspectives. Telemat Inform 33(2):342–355

    Google Scholar 

  27. Hsu CL, Lin JCC (2015) What drives purchase intention for paid mobile apps?–An expectation confirmation model with perceived value. Electron Commer Res Appl 14(1):46–57

    Google Scholar 

  28. Instituto Nacional de Estadística (2019) Population, municipalities and sex. http://www.ine.es/jaxiT3/Tabla.htm?t=2882

  29. Jeon HM, Ali F, Lee SW (2019) Determinants of consumers’ intentions to use smartphones apps for flight ticket bookings. Serv Ind J 39(5–6):385–402

    Google Scholar 

  30. Kang S (2014) Factors influencing intention of mobile application use. Int J Mob Commun 12(4):360–379

    Google Scholar 

  31. Kearney AT (2011) The sports market: major trends and challenges in an industry full of passion. AT Kearney

  32. Kennedy-Eden H, Gretzel U (2012) A taxonomy of mobile applications in tourism. E-Rev Tour Res 10(2):47–50

  33. Kerner C, Goodyear VA (2017) The motivational impact of wearable healthy lifestyle technologies: a self-determination perspective on Fitbits with adolescents. Am J Health Educ 48(5):287–297

    Google Scholar 

  34. Khovanova-Rubicondo KM (2012) Cultural routes as a source for new kind of tourism development: evidence from the council of Europe’s programme. Int J Herit Digit Era 1:83–88

    Google Scholar 

  35. Kim HB, Kim TT, Shin SW (2009) Modeling roles of subjective norms and eTrust in customers’ acceptance of airline B2C eCommerce websites. Tour Manag 30(2):266–277

    Google Scholar 

  36. Kleijnen M, Wetzels M, De Ruyter K (2004) Consumer acceptance of wireless finance. J Financ Serv Mark 8(3):206–217

    Google Scholar 

  37. Kourouthanassis P, Boletsis C, Bardaki C, Chasanidou D (2015) Tourists responses to mobile augmented reality travel guides: the role of emotions on adoption behavior. Pervasive Mob Comput 18:71–87

    Google Scholar 

  38. Lamont M, McKay J (2012) Intimations of postmodernity in sports tourism at the Tour de France. J Sport Tour 17(4):313–331

    Google Scholar 

  39. Lamsfus C, Wang D, Alzua-Sorzabal A, Xiang Z (2015) Going mobile: defining context for on-the-go travelers. J Travel Res 54(6):691–701

    Google Scholar 

  40. Law R, Cheng I, Wang L (2018) A comprehensive review of mobile technology use in hospitality and tourism. J Hosp Market Manag 27(6):626–648. https://doi.org/10.1080/19368623.2018.1423251

    Article  Google Scholar 

  41. Lee MC (2010) Explaining and predicting users’ continuance intention toward e-learning: an extension of the expectation–confirmation model. Comput Educ 54(2):506–516

    Google Scholar 

  42. Lema MA, Laya A, Mahmoodi T, Cuevas M, Sachs J, Markendahl J, Dohler M (2017) Business case and technology analysis for 5G low latency applications. IEEE Access 5:5917–5935

    Google Scholar 

  43. Li S, Da Xu L, Zhao S (2018) 5G internet of things: a survey. J Ind Inform Integr 10:1–9

    Google Scholar 

  44. Liang S, Schuckert M, Law R, Masiero L (2017) The relevance of mobile tourism and information technology: an analysis of recent trends and future research directions. J Travel Tour Market 34(6):732–748

    Google Scholar 

  45. Lin KY, Lu HP (2015) Predicting mobile social network acceptance based on mobile value and social influence. Internet Res 25(1):107–130

    Google Scholar 

  46. Lin KC, Chang LS, Tseng CM, Lin HH, Chen YF, Chao CL (2014) A smartphone APP for health and tour- ism promotion. Math Probl Eng. https://doi.org/10.1155/2014/583179

    Article  Google Scholar 

  47. Macias C, Panch T, Hicks YM, Scolnick JS, Weene DL, Öngür D, Cohen BM (2015) Using smartphone apps to promote psychiatric and physical well-being. Psychiatr Q 86(4):505–519

    Google Scholar 

  48. Marcinkiewicz HR, Regstad NG (1996) Using subjective norms to predict teachers’ computer use. J Comput Teacher Educ 13(1):27–33

    Google Scholar 

  49. McCallum C, Rooksby J, Gray CM (2018) Evaluating the impact of physical activity apps and wearables: interdisciplinary review. JMIR mHealth uHealth 6(3):e58

    Google Scholar 

  50. Minghetti V, Buhalis D (2010) Digital divide in tourism. J Travel Res 49(3):267–281. https://doi.org/10.1177/0047287509346843

    Article  Google Scholar 

  51. Montano DE, Kasprzyk D (2015) Theory of reasoned action, theory of planned behavior, and the integrated behavioral model. Health Behav 70(4):231

    Google Scholar 

  52. Mouakket S (2015) Factors influencing continuance intention to use social network sites: the Facebook case. Comput Hum Behav 53:102–110

    Google Scholar 

  53. Nunnally JC, Bernstein IH (1994) Psychometric theory, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  54. Oh S, Lehto XY, Park J (2009) Travelers’ intent to use mobile technologies as a function of effort and performance expectancy. J Hosp Market Manag 18(8):765–781

    Google Scholar 

  55. Pearce PL (2011) Tourist behaviour and the contemporary world. Channel View, Bristol

    Google Scholar 

  56. Pearce PL, Gretzel U (2012) Tourism in technology dead zones: documenting experiential dimensions. Int J Tour Sci 12(2):1–20

    Google Scholar 

  57. Peever N, Vella K, Johnson D, Ploderer B, Klarkowski M, Mitchell J (2017) Understanding initial experiences with Mindmax, an mHealth app that draws on shared interests in sports and video games. In Proceedings of the 29th Australian Conference on Computer-Human Interaction, pp. 438–442. ACM

  58. Pellino TA (1997) Relationships between patient attitudes, subjective norms, perceived control, and analgesic use following elective orthopedic surgery. Res Nurs Health 20(2):97–105

    Google Scholar 

  59. Rese A, Baier D, Geyer-Schulz A, Schreiber S (2017) How augmented reality apps are accepted by consumers: a comparative analysis using scales and opinions. Technol Forecast Soc Chang 124:306–319

    Google Scholar 

  60. Richter NF, Sinkovics RR, Ringle CM, Schlägel C (2016) A critical look at the use of SEM in international business research. Int Market Rev 33(3):376–404

    Google Scholar 

  61. Ringle CM, Wende S, Becker JM (2015) SmartPLS 3. SmartPLS GmbH, Boenningstedt

    Google Scholar 

  62. Román-Viñas B, Serra-Majem L, Ribas-Barba L, Roure-Cuspinera E, Cabezas C, Vallbona C, Plasencia A (2007) Trends in physical activity status in Catalonia, Spain (1992–2003). Public Health Nutr 10(11A):1389–1395

    Google Scholar 

  63. Ruiz ME, Gil I, Calderón H (2010) El efecto moderador de la edad en la relación entre el valor percibido, las TIC del minorista y la lealtad del cliente. Cuadernos de Economía y Dirección de la Empresa 13(43):65–91

    Google Scholar 

  64. Rüsch N, Müller M, Ajdacic-Gross V, Rodgers S, Corrigan PW, Rössler W (2014) Shame, perceived knowledge and satisfaction associated with mental health as predictors of attitude patterns towards help-seeking. Epidemiol Psychiatr Sci 23(2):177–187

    Google Scholar 

  65. Shin DH (2009) An empirical investigation of a modified technology acceptance model of IPTV. Behav Inf Technol 28(4):361–372

    Google Scholar 

  66. Shin DH (2011) Understanding e-book users: uses and gratification expectancy model. New Media Soc 13(2):260–278

    Google Scholar 

  67. Song J, Kim J, Cho K (2018) Understanding users’ continuance intentions to use smart-connected sports products. Sport Manag Rev 21(5):477–490

    Google Scholar 

  68. Stankov U, Filimonau V (2019) Co-creating “mindful” holiday resort experience for guests’ digital well-being. Information and communication technologies in tourism. Springer, Cham, pp 200–211

    Google Scholar 

  69. Tu R, Hsieh P, Feng W (2018) Walking for fun or for “likes”? The impacts of different gamification orientations of fitness apps on consumers’ physical activities. Sport Manag Rev 22(5):682–693

    Google Scholar 

  70. Vallespín M, Molinillo S, Muñoz-Leiva F (2017) Segmentation and explanation of smartphone use for travel planning based on socio-demographic and behavioral variables. Ind Manag Data Syst 117(3):605–619

    Google Scholar 

  71. Van Kerrebroeck H, Brengman M, Willems K (2017) Escaping the crowd: an experimental study on the impact of a Virtual Reality experience in a shopping mall. Comput Hum Behav 77:437–450

    Google Scholar 

  72. Venkatesh V, Zhang X (2010) Unified theory of acceptance and use of technology: US vs. China. J Glob Inform Technol Manag 13(1):5–27

    Google Scholar 

  73. Venkatesh V, Morris MG, Davis GB, Davis FD (2003) User acceptance of information technology: toward a unified view. MIS Q 27:425–478

    Google Scholar 

  74. Venkatesh V, Thong JY, Xu X (2012) Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q 36(1):157–178

    Google Scholar 

  75. Verreynne ML, Williams AM, Ritchie BW, Gronum S, Betts KS (2019) Innovation diversity and uncertainty in small and medium sized tourism firms. Tour Manag 72:257–269

    Google Scholar 

  76. Wang D, Xiang Z, Fesenmaier DR (2016) Smartphone use in everyday life and travel. J Travel Res 55(1):52–63

    Google Scholar 

  77. Wei J (2014) How wearables intersect with the cloud and the internet of things: considerations for the developers of wearables. IEEE Consum Electron Mag 3(3):53–56

    Google Scholar 

  78. Weng GS, Zailani S, Iranmanesh M, Hyun SS (2017) Mobile taxi booking application service’s continuance usage intention by users. Transport Res Part D 57:207–216

    Google Scholar 

  79. Wright RT, Campbell DE, Thatcher JB, Nicholas R (2012) Operationalizing multidimensional constructs in structural equation modeling: recommendations for IS research. Commun Assoc Inform Syst 30(23):367–412

    Google Scholar 

  80. Yang Y, Asaad Y, Dwivedi Y (2017) Examining the impact of gamification on intention of engagement and brand attitude in the marketing context. Comput Hum Behav 73:459–469

    Google Scholar 

  81. Yuan S, Ma W, Kanthawala S, Peng W (2015) Keep using my health apps: discover users’ perception of health and fitness apps with the UTAUT2 model. Telemed e-Health 21(9):735–741

    Google Scholar 

Download references

Funding

This work was funded by Programa de ayudas a la investigación de la Facultad de Comercio y Gestión de la Universidad de Málaga.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javier Perez-Aranda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 9.

Table 9 Measurement instrument

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perez-Aranda, J., González Robles, E.M. & Urbistondo, P.A. Sport-related physical activity in tourism: an analysis of antecedents of sport based applications use. Inf Technol Tourism 23, 97–120 (2021). https://doi.org/10.1007/s40558-019-00161-2

Download citation

Keywords

  • Use in trips
  • Theory of reasoned action
  • Sport app
  • Partial least squares (PLS)