Advertisement

A mobile personalized tourist guide and its user evaluation

  • Ernesto TarantinoEmail author
  • Ivanoe De Falco
  • Umberto Scafuri
Original Research
  • 100 Downloads

Abstract

The paper presents an interactive electronic guide application prototype able to recommend personalized multiple-day tourist itineraries to mobile web users. The proposed application relies on an evolutionary optimizer that allows the determination, in an acceptable time, of a near-optimal user-adapted tour for each day of the visit by considering different conflicting objectives. The tour optimizer automatically plans the itinerary by selecting the sights of potential interest based on user preferences, the available visit time considered on a daily basis, opening days and hours, visiting times, accessibility of the places of interest and weather forecasting. The interactive functionalities and facilities provided by the application are illustrated along with the model used to adapt the tourist itinerary to user preferences and constraints. An experimental qualitative and quantitative evaluation has been performed to assess the validity of the guide prototype. Particular attention has been devoted to the usability of the application and its graphic unit interface along with user satisfaction.

Keywords

Interactive mobile applications Personalized tourist routes Heuristics User evaluation 

Notes

Acknowledgements

This work has been supported by the project “Organization of Cultural Heritage for Smart Tourism and Real-Time Accessibility (ORCHESTRA)” (PON04a2_D) approved and financed within the 2012 “Smart Cities and Communities” call of the Italian Ministry for University and Research.

References

  1. Anacleto R, Figueiredo L, Almeidaa A, Novais P (2014) Mobile application to provide personalized sightseeing tours. J Netw Comput Appl 41:56–64CrossRefGoogle Scholar
  2. Ardissono L, Kuflik T, Petrelli D (2012) Personalization in cultural heritage: the road travelled and the one ahead. User Model User-adapt Interact 22(1–2):73–99CrossRefGoogle Scholar
  3. Betram D (2009) Likert scales. The Faculty of Mathematics University of Belgrad, Croatia, Technical reportGoogle Scholar
  4. Borràs J, Moreno A, Valls A (2014) Intelligent tourism recommender systems: a survey. Expert Syst Appl 41(16):7370–7389CrossRefGoogle Scholar
  5. Brilhante IR, Macedo JA, Nardini FM, Perego R, Renso C (2015) On planning sightseeing tours with T ripB uilder. Inf Process Manag 51(2):1–15CrossRefGoogle Scholar
  6. Brown B, Chalmers M (2003) Tourism and mobile technology. In: Proceedings of the 8th European conference on computer supported cooperative work (ECSCW), Springer, pp 335–354Google Scholar
  7. Chen CC, Tsai JL (2019) Determinants of behavioral intention to use the personalized location-based mobile tourism application: an empirical study by integrating TAM with ISSM. Future Gener Comput Syst 96:628–638CrossRefGoogle Scholar
  8. Coello ACC, Van Veldhuizen AD, Lamont GB (2007) Evolutionary algorithms for solving multi-objective problems, vol 2. Genetic and evolutionary computation series. Springer, New YorkGoogle Scholar
  9. Cotfas LA (2011) Collaborative itinerary recommender systems. Econ Inform J 11(1):191–200Google Scholar
  10. Cotfas LA, Diosteanu A, Dumitrescu SD, Smeureanu A (2011) Semantic search itinerary recommender systems. Int J Comput 5(3):370–377Google Scholar
  11. De Falco I, Scafuri U, Tarantino E (2015) A multiobjective evolutionary algorithm for personalized tours in street networks. Lecture notes computer science. Springer, New York, pp 115–127Google Scholar
  12. De Falco I, Scafuri U, Tarantino E (2016) Optimizing personalized touristic itineraries by a multiobjective evolutionary algorithm. Int J Inf Technol Decis Mak 15(6):1269–1312CrossRefGoogle Scholar
  13. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, ChichesterGoogle Scholar
  14. Diosteanu A, Cotfas LA, Smeureanu A, Dumitrescu SD (2011) Natural language processing applied in itinerary recommender systems. In: Proceedings of the 10th international conference on applied computer and applied computational science, WSEAS Press, pp 260–265Google Scholar
  15. Dix A, Finlay J, Abowd GD, Beale R (2004) Human–computer Interaction, vol 3. Pearson-Prentice Hall, New JerseyGoogle Scholar
  16. Expósito A, Mancini S, Brito J, Moreno JA (2019) A fuzzy GRASP for the tourist trip design with clustered POIs. Expert Syst Appl 127(1):210–227CrossRefGoogle Scholar
  17. Feo TA, Resende MGC (1989) A probabilistic heuristic for a computationally difficult set covering problem. Oper Res Lett 8:67–71CrossRefGoogle Scholar
  18. Fogli A, Sansonetti G (2019) Exploiting semantics for context-aware itinerary recommendation. Pers Ubiquit Comput.  https://doi.org/10.1007/s00779-018-01189-7 CrossRefGoogle Scholar
  19. Gambardella L, Montemanni R, Weyland D (2012) Coupling ant colony systems with strong local searches. Eur J Oper Res 220(3):831–843CrossRefGoogle Scholar
  20. Gao R, Li J, Li X, Song C, Zhou Y (2018) A personalized point-of-interest recommendation model via fusion of geo-social information. Neurocomputing 273:159–170CrossRefGoogle Scholar
  21. Garcia A, Linaza MT, Arbelaiz O, Vansteenwegen P (2009) Intelligent routing system for a personalized electronic tourist guide. In: Höpken W, Gretzel U, Law R (eds) Information and communication technologies in tourism 2009. Springer, New York, pp 185–197CrossRefGoogle Scholar
  22. Garcia A, Vansteenwegen P, Arbelaitz O, Souffriau W, Linaza MT (2013) Integrating public transportation in personalised electronic tourist guides. Comput Oper Res 40(3):758–774CrossRefGoogle Scholar
  23. Garcia I, Sebastia L, Onaindia E (2011) On the design of individual and group recommender systems for tourism. Expert Syst Appl 38:7683–7692CrossRefGoogle Scholar
  24. Gavalas D, Kenteris M, Konstantopoulos C, Pantziou G (2012) Web application for recommending personalised mobile tourist routes. IET Softw 6(4):313–322CrossRefGoogle Scholar
  25. Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G (2014a) Mobile recommender systems in tourism. J Netw Comput Appl 39:319–333CrossRefGoogle Scholar
  26. Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G (2014b) A survey on algorithmic approaches for solving tourist trip design problems. J Heuristics 20(3):291–328CrossRefGoogle Scholar
  27. Gavalas D, Kasapakis V, Konstantopoulos C, Pantziou G, Vathis N, Zaroliagis C (2015a) The eCOMPASS multimodal tourist tour planner. Expert Syst Appl 42(21):7303–7316CrossRefGoogle Scholar
  28. Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G, Vathis N (2015b) Heuristics for the time dependent team orienteering problem: application to tourist route planning. Comput Oper Res 62:36–50CrossRefGoogle Scholar
  29. Gavalas D, Kasapakis V, Konstantopoulos C, Pantziou G, Vathis N (2017) Scenic route planning for tourists. Pers Ubiquit Comput 21(1):137–155CrossRefGoogle Scholar
  30. Gunawan A, Lau HC, Vansteenwegen P (2016) Orienteering problem: a survey of recent variants, solution approaches and applications. Eur J Oper Res 255(2):315–332CrossRefGoogle Scholar
  31. Hu Q, Lim A (2014) An iterative three-component heuristic for the team orienteering problem with time windows. Eur J Oper Res 232:276–286CrossRefGoogle Scholar
  32. Huang Y, Bian L (2009) A bayesian network and analytic hierarchy process based personalized recommendations for tourist attractions over the internet. Expert Syst Appl 36(1):933–943CrossRefGoogle Scholar
  33. Hyde KK, Lawson R (2003) The nature of independent travel. J Travel Res 42(1):13–23CrossRefGoogle Scholar
  34. Jiang K, Yin H, Wang P, Yu N (2013) Learning from contextual information of geo-tagged web photos to rank personalized tourism attractions. Neurocomputing 119(7):17–25CrossRefGoogle Scholar
  35. Kenteris M, Gavalas D, Pantziou G, Konstantopoulos C (2010) Near-optimal personalized daily itineraries for a mobile tourist guide. In: Proceedings of the symposium on computers and communications (ISCC), IEEE, pp 862–864Google Scholar
  36. Kenteris M, Gavalas D, Economou D (2011) Electronic mobile guides: a survey. Pers Ubiquit Comput 15(1):97–111CrossRefGoogle Scholar
  37. Kotiloglu S, Lappas T, Pelechrinis K, Repoussis P (2017) Personalized multi-period tour recommendations. Tour Manag 62:76–88CrossRefGoogle Scholar
  38. Kou G, Lin C (2014) A cosine maximization method for the priority vector derivation in AHP. Eur J Oper Res 235(1):225–232CrossRefGoogle Scholar
  39. Kou G, Lu Y, Peng Y, Shi Y (2012) Evaluation of classification algorithms using MCDM and rank correlation. Int Technol Decis Mak 11(1):197–225CrossRefGoogle Scholar
  40. Kou G, Peng Y, Wang G (2014) Evaluation of clustering algorithms for financial risk analysis using MCDM methods. Inf Sci 275:1–12CrossRefGoogle Scholar
  41. Labadie N, Mansini R, Melechovský J, Calvo RW (2012) The team orienteering problem with time windows: an LP-based granular variable neighborhood search. Eur J Oper Res 220:15–27CrossRefGoogle Scholar
  42. Laugwitz B, Held T, Schrepp M (2008) Construction and evaluation of a user experience questionnaire. Springer, BerlinCrossRefGoogle Scholar
  43. Liao Z, Zheng W (2018) Using a heuristic algorithm to design a personalized day tour route in a time-dependent stochastic environment. Tour Manag 68:284–300CrossRefGoogle Scholar
  44. Lin SW, Yu VF (2012) A simulated annealing heuristic for the team orienteering problem with time windows. Eur J Oper Res 217:94–107CrossRefGoogle Scholar
  45. Lourenco HR, Martin O, Stuetzle T (2002) Iterated local search. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. Kluwer Academic Publishers, Norwell, pp 321–353Google Scholar
  46. Lund AM (2001) Measuring usability with the use questionnaire. Usability Interface 8(2):3–6Google Scholar
  47. Meys W, Groen M (2014) Quo vadis?: Persuasive computing using real time queue information. In: ACM (ed) Proceedings of the first international conference on IoT in urban space, pp 102–104Google Scholar
  48. Migliorini S, Carra D, Belussi A (2018) Adaptive trip recommendation system: balancing travelers among pois with MapuppercaseReduce. In: Proceedings of the IEEE international congress on big data, IEEE, pp 255–259Google Scholar
  49. Montemanni R, Weyland D, Gambardella L (2009) Ant colony system for the team orienteering problem with time windows. Found Comput Decis Sci 34:287–306Google Scholar
  50. Montemanni R, Weyland D, Gambardella L (2011) An enhanced ant colony system for the team orienteering problem with time windows. In: Proceedings of the international symposium on computer science and society, IEEE, pp 381–384Google Scholar
  51. Muccini H, Rossi F, Traini L (2017) A smart city run-time planner for multi-site congestion management. In: Proceedings of the international conference on smart systems and technologies (SST), IEEE, pp 175–179Google Scholar
  52. Nielsen J (1993) Usability engineering. Academic Press, CambridgeCrossRefGoogle Scholar
  53. Preece J, Rogers Y, Sharp H (2002) Interaction design, beyond human-computer interaction. Wiley, New YorkGoogle Scholar
  54. Righini G, Salani M (2009) Decremental state space relaxation strategies and initialization heuristics for solving the orienteering problem with time windows with dynamic programming. Comput Oper Res 36(4):1191–1203CrossRefGoogle Scholar
  55. Rodríguez B, Molina J, Pérez F, Caballero R (2012) Interactive design of personalised tourism routes. Tour Manag 33:926–940CrossRefGoogle Scholar
  56. Schrepp M, Hinderks A, Thomaschewski J (2017) Construction of a benchmark for the user experience questionnaire (UEQ). Int J Interact Multimed Artif Intell 4(4):40–44Google Scholar
  57. Shu H, Song C, Pei T, Xu L, Ou Y, Zhang L, Li T (2016) Queuing time prediction using WiFi positioning data in an indoor scenario. Sensors 16(11):E1958CrossRefGoogle Scholar
  58. Souffriau W, Vansteenwegen P, Vertommen J, Berghe GV, Van Oudheusden D (2008) A personalised tour trip design algorithm for mobile tourist guides. Appl Artif Intell 22(10):964–985CrossRefGoogle Scholar
  59. Souffriau W, Maervoet J, Vansteenwegen P, Vanden Berghe G, Van Oudheusden D (2009) A mobile tourist decision support system for small footprint devices. In: Lecture notes computer science, bio-inspired systems: computational and ambient intelligence, LNCS 5517, Springer, New York, pp 1248–1255Google Scholar
  60. Souffriau W, Vansteenwegen P, Vanden Berghe G, Van Oudheusden D (2013) The multiconstraint team orienteering problem with multiple time windows. Transport Sci 47(1):53–63CrossRefGoogle Scholar
  61. Sylejmani K, Kosova P, Dorn J, Musliu N (2012) A tabu search approach for multi constrained team orienteering problem and its application in touristic trip planning. In: Proceedings of the 12th international conference on hybrid intelligent systems, IEEE, pp 300–305Google Scholar
  62. Sylejmani K, Dorn J, Musliu N (2017) Planning the trip itinerary for tourist groups. Inf Technol Tour 17(3):275–314CrossRefGoogle Scholar
  63. Tewaria AS, Barman AG (2018) Sequencing of items in personalized recommendations using multiple recommendation techniques. Expert Syst Appl 97:70–82CrossRefGoogle Scholar
  64. Tricoire F, Romauch M, Doerner K, Hartl R (2010) Heuristics for the multi-period orienteering problem with multiple time windows. Comput Oper Res 37:351–367CrossRefGoogle Scholar
  65. Umanets A, Ferreira A, Leite N (2014) GuideMe—a tourist guide with a recommender system and social interaction. Proc Technol 17:407–414CrossRefGoogle Scholar
  66. Vansteenwegen P, Souffriau W, Van Oudheusden D (2009a) A detailed analysis of two metaheuristics for the team orienteering problem, engineering stochastic local search algorithms. Lecture notes computer science, vol 5752. Springer, New York, pp 110–114Google Scholar
  67. Vansteenwegen P, Souffriau W, Vanden Berghe G, Van Oudheusden D (2009b) Iterated local search for the team orienteering problem with time windows. Comput Oper Res 36(12):3281–3290CrossRefGoogle Scholar
  68. Vansteenwegen P, Souffriau W, Van Oudheusden D (2011a) The orienteering problem: a survey. Eur J Oper Res 209(1):1–10CrossRefGoogle Scholar
  69. Vansteenwegen P, Souffriau W, Vanden Berghe G, Van Oudheusden D (2011b) The city trip planner: an expert system for tourists. Expert Syst Appl 38(6):6540–6546CrossRefGoogle Scholar
  70. Verbeeck C, Sörensen K, Aghezzaf EH, Vansteenwegen P (2014) A fast solution method for the time-dependent orienteering problem. Eur J Oper Res 236(2):419–432CrossRefGoogle Scholar
  71. Wik (2017) Wikitude developer SDK. http://www.wikitude.com/developer/documentation/android. Accessed 15 June 2019
  72. Yon H, Zheng Y, Xie X, Woo W (2012) Social itinerary recommendation from user-generated digital trails. Pers Ubiquit Comput 16(5):469–484CrossRefGoogle Scholar
  73. Zheng W, Liao Z (2019) Using a heuristic approach to design personalized tour routes for heterogeneous tourist groups. Tour Manag 72:313–325CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of High Performance Computing and NetworkingNational Research Council of ItalyNaplesItaly

Personalised recommendations