Hotel online reviews: different languages, different opinions

Abstract

Online reviews are one of the main influencers of hotel purchase decisions. This study performs an analysis of reviews extracted from well-known online review sources in combination with hotel sales data and concludes that ratings differ according to the language of reviews. Data science tools have been applied to English, Spanish, and Portuguese reviews, revealing that reviews written in English achieve higher ratings when compared with Spanish or Portuguese reviews. A new visualization method is proposed to quickly depict the sentiment of main topics mentioned in reviews, clearly revealing that not all customers are influenced by reviews in the same way or look for the same things in a hotel. This study has great implications for online reviews research and for hotel management as it clearly shows that language can be used to identify preferences of guests from different origins and because it gives hoteliers more information on how to provide a better service according to guests’ cultural background.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abbott D (2014) Applied predictive analytics: principles and techniques for the professional data analyst. Wiley, Indianapolis

    Google Scholar 

  2. Anderson CK (2012) The impact of social media on lodging performance. Cornell Hosp Rep 12:4–11

    Google Scholar 

  3. Ayeh JK, Au N, Law R (2016) Investigating cross-national heterogeneity in the adoption of online hotel reviews. Int J Hosp Manag 55:142–153. https://doi.org/10.1016/j.ijhm.2016.04.003

    Article  Google Scholar 

  4. Bjørkelund E, Burnett TH, Nørvag K (2012) A study of opinion mining and visualization of hotel reviews. In: Proceedings of the 14th international conference on information integration and web-based applications & services. ACM, New York, pp 229–238

  5. Cantallops AS, Salvi F (2014) New consumer behavior: a review of research on eWOM and hotels. Int J Hosp Manag 36:41–51. https://doi.org/10.1016/j.ijhm.2013.08.007

    Article  Google Scholar 

  6. Central Intelligence Agency (2016) The world factbook: field listing: languages. https://www.cia.gov/library/publications/the-world-factbook/fields/2098.html. Accessed 7 Feb 2016

  7. Chen RXY, Cheung C, Law R (2012) A review of the literature on culture in hotel management research: what is the future? Int J Hosp Manag 31:52–65. https://doi.org/10.1016/j.ijhm.2011.06.010

    Article  Google Scholar 

  8. Commission European (ed) (2014) Study on online consumer reviews in the hotel sector. Final report. European Commission, Brussels

    Google Scholar 

  9. Deutscher G (2010) Through the language glass: why the world looks different in other languages. Macmillan, New York

    Google Scholar 

  10. Dow D, Karunaratna A (2006) Developing a multidimensional instrument to measure psychic distance stimuli. J Int Bus Stud 37:578–602

    Article  Google Scholar 

  11. Duan W, Yu Y, Cao Q, Levy S (2016) Exploring the impact of social media on hotel service performance: a sentimental analysis approach. Cornell Hosp Q 57:282–296. https://doi.org/10.1177/1938965515620483

    Article  Google Scholar 

  12. Euskal Herriko Unibertsitatea, IXA Taldea (2014) Spanish WordnNet-LMF. http://hdl.handle.net/10230/22923. Accessed 6 Feb 2016

  13. Feldman R, Sanger J (2007) The text mining handbook: advanced approaches in analyzing unstructured data. Cambridge University Press, New York

    Google Scholar 

  14. Giraudoux P (2016) Pgirmess: data analysis in ecology. R package version 1.6.5. https://CRAN.R-project.org/package=pgirmess. Accessed 5 Mar 2018

  15. Gupta N, Di Fabbrizio G, Haffner P (2010) Capturing the stars: predicting ratings for service and product reviews. In: SS’10 proceedings of the NAACL HLT 2010 workshop on semantic search. Association for Computational Linguistics, Stroudsburg, pp 36–43

  16. Hale SA (2016) User reviews and language: how language influences ratings. Hum-Comput Interact. https://doi.org/10.1145/2851581.2892466

    Google Scholar 

  17. Han HJ, Mankad S, Gavirneni N, Verma R (2016) What guests really think of your hotel: text analytics of online customer reviews. Cornell Hosp Rep 16:3–17

    Google Scholar 

  18. Hofstede G (1984) Culture’s consequences: international differences in work-related values. SAGE, London

    Google Scholar 

  19. Holten D (2006) Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans Vis Comput Graph 12:741–748

    Article  Google Scholar 

  20. House RJ, Hanges PJ, Javidan M et al (eds) (2004) Culture, leadership, and organizations: the GLOBE study of 62 societies. SAGE Publications Inc, Thousand Oaks

    Google Scholar 

  21. Hu M, Liu B (2004) Mining and summarizing customer reviews. In: Kim W, Kohavi R (eds) Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 168–177

  22. Instituto Nacional de Estatística (2016) Tourism statistics—2015. https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes&PUBLICACOESpub_boui=265858123&PUBLICACOEStema=55581&PUBLICACOESmodo=2. Accessed 1 Sep 2016

  23. Kim WG, Lim H, Brymer RA (2015) The effectiveness of managing social media on hotel performance. Int J Hosp Manag 44:165–171. https://doi.org/10.1016/j.ijhm.2014.10.014

    Article  Google Scholar 

  24. Kwok L, Xie KL, Richards T (2017) Thematic framework of online review research: a systematic analysis of contemporary literature on seven major hospitality and tourism journals. Int J Contemp Hosp Manag 29:307–354. https://doi.org/10.1108/IJCHM-11-2015-0664

    Article  Google Scholar 

  25. Liu B, Zhang L (2012) A survey of opinion mining and sentiment analysis. In: Aggarwal CC, Zhai CX (eds) Mining text data. Springer, Boston, pp 415–463

    Google Scholar 

  26. Liu Y, Teichert T, Rossi M et al (2017) Big data for big insights: investigating language-specific drivers of hotel satisfaction with 412,784 user-generated reviews. Tour Manag 59:554–563. https://doi.org/10.1016/j.tourman.2016.08.012

    Article  Google Scholar 

  27. Melian-Gonzalez S, Bulchand-Gidumal J, Gonzalez Lopez-Valcarcel B (2013) Online customer reviews of hotels: as participation increases, better evaluation is obtained. Cornell Hosp Q 54:274–283. https://doi.org/10.1177/1938965513481498

    Article  Google Scholar 

  28. Mellinas JP, María-Dolores S-MM, Bernal García JJB (2015) Booking.com: the unexpected scoring system. Tour Manag 49:72–74. https://doi.org/10.1016/j.tourman.2014.08.019

    Article  Google Scholar 

  29. Miller GA (1998) WordNet: a lexical database for English. Communications of the ACM. MIT Press, Cambridge, pp 39–41

    Google Scholar 

  30. Öğüt H, Onur Taş BKO (2012) The influence of Internet customer reviews on the online sales and prices in hotel industry. Serv Ind J 32:197–214. https://doi.org/10.1080/02642069.2010.529436

    Article  Google Scholar 

  31. Oliveira HG, Gomes P (2014) ECO and Onto.PT: a flexible approach for creating a Portuguese WordNet automatically. Lang Resour Eval 48:373–393. https://doi.org/10.1007/s10579-013-9249-9

    Article  Google Scholar 

  32. Pacheco L (2016) An analysis of online reviews by language groups: the case of hotels in Porto, Portugal. Eur J Tour Res 14:66–74

    Google Scholar 

  33. Phillips P, Barnes S, Zigan K, Schegg R (2016) Understanding the impact of online reviews on hotel performance: an empirical analysis. J Travel Res 56:235–249. https://doi.org/10.1177/0047287516636481

    Article  Google Scholar 

  34. Pohlert T (2014) The pairwise multiple comparison of mean ranks package (PMCMR). R package. http://CRAN.R-project.org/package=PMCMR. Accessed 5 Mar 2018

  35. Ravi K, Ravi V (2015) A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl Based Syst 89:14–46. https://doi.org/10.1016/j.knosys.2015.06.015

    Article  Google Scholar 

  36. Saralegi X, San Vincente I (2013) Elhuyar at TASS 2013. In: Esteban AD, Loinaz IA, Román JV (eds) Proceedings of XXIX congreso de la sociedad española de procesamiento de lenguaje natural. El Congreso Español de Informática, Madrid, pp 143–150

  37. Schuckert M, Liu X, Law R (2015a) A segmentation of online reviews by language groups: how English and non-English speakers rate hotels differently. Int J Hosp Manag 48:143–149. https://doi.org/10.1016/j.ijhm.2014.12.007

    Article  Google Scholar 

  38. Schuckert M, Liu X, Law R (2015b) Hospitality and tourism online reviews: recent trends and future directions. J Travel Tour Mark 32:608–621. https://doi.org/10.1080/10548408.2014.933154

    Article  Google Scholar 

  39. Silva MJ, Carvalho P, Sarmento L (2012) Building a sentiment lexicon for social judgement mining. In: Caseli H, Villavicencio A, Teixeira A, Perdigão F (eds) Computational processing of the Portuguese language. Springer, Berlin, pp 218–228

    Google Scholar 

  40. Surowiecki J (2005) The wisdom of crowds, reprint edn. Anchor, New York

    Google Scholar 

  41. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  42. Torres EN, Singh D, Robertson-Ring A (2015) Consumer reviews and the creation of booking transaction value: lessons from the hotel industry. Int J Hosp Manag 50:77–83. https://doi.org/10.1016/j.ijhm.2015.07.012

    Article  Google Scholar 

  43. Vermeulen IE, Seegers D (2009) Tried and tested: the impact of online hotel reviews on consumer consideration. Tour Manag 30:123–127. https://doi.org/10.1016/j.tourman.2008.04.008

    Article  Google Scholar 

  44. Wang B, Huang Y, Li X (2016) Combining review text content and reviewer-item rating matrix to predict review rating. Comput Intell Neurosci 5968705(2016):1–11. https://doi.org/10.1155/2016/5968705

    Google Scholar 

  45. Ware C (2009) Information visualization: perception for design, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  46. World Travel & Tourism Council (2016) Travel & tourism: economic impact 2016 Portugal. World Travel & Tourism Council, London

    Google Scholar 

  47. Xiang Z, Schwartz Z, Gerdes JHJ, Uysal M (2015) What can big data and text analytics tell us about hotel guest experience and satisfaction? Int J Hosp Manag 44:120–130. https://doi.org/10.1016/j.ijhm.2014.10.013

    Article  Google Scholar 

  48. Xu X, Li Y (2016) The antecedents of customer satisfaction and dissatisfaction toward various types of hotels: a text mining approach. Int J Hosp Manag 55:57–69. https://doi.org/10.1016/j.ijhm.2016.03.003

    Article  Google Scholar 

  49. Ye Q, Law R, Gu B (2009) The impact of online user reviews on hotel room sales. Int J Hosp Manag 28:180–182. https://doi.org/10.1016/j.ijhm.2008.06.011

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nuno Antonio.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antonio, N., de Almeida, A., Nunes, L. et al. Hotel online reviews: different languages, different opinions. Inf Technol Tourism 18, 157–185 (2018). https://doi.org/10.1007/s40558-018-0107-x

Download citation

Keywords

  • Data science
  • Hospitality industry
  • Language
  • Natural language processing
  • Online reviews