Skip to main content
Log in

Where’s everybody? Comparing the use of heatmaps to uncover cities’ tacit social context in smartphones and pervasive displays

  • Original Research
  • Published:
Information Technology & Tourism Aims and scope Submit manuscript

Abstract

We introduce HotCity, a city-wide social context crowdsourcing platform that utilises user’s current location and geo-tagged social data (e.g., check-ins, “likes” and ratings) to autonomously obtain insight on a city’s tacit social awareness (e.g., “when is best time and where to go out on a Saturday night?”). HotCity is available as a mobile application for Android and as an interactive application on pervasive large displays, showcasing a heatmap of social buzz. We present the results of an in-the-field evaluation with 30 volunteers, of which 27 are tourists of the mobile app, compare it to a previous evaluation of the pervasive display app and also present usage data of free use of the pervasive display app over 3 years in the city of Oulu, Finland. Our data demonstrate that HotCity can communicate effectively the city’s current social buzz, without affecting digital maps’ cartography information. Our empirical analysis highlights a change in tourists’ foci when exploring the city using HotCity. We identify a transition from “individual [places]” to “good [areas]” and “people [choices]”. Our contributions are threefold: a long-term deployment of a city-wide social context crowdsourcing platform; an in-the-field evaluation of HotCity on mobile devices and pervasive displays; and an evaluation of cities’ tacit knowledge as social context as a denominator in city planning and for the development of future mobile social-aware applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://docs.ubioulu.fi/.

  2. Mapex heatmap library https://github.com/chemalarrea/Mapex.

References

  • Alghamdi H, Zhu S, El Saddik A (2016) E-tourism: mobile dynamic trip planner. In: 2016 IEEE international symposium on multimedia (ISM). IEEE, pp 185–188

  • Alves AO, Pereira FC, Biderman A, Ratti C (2009) Place enrichment by mining the web. In: European conference on ambient intelligence. Springer, Berlin, pp 66–77. https://doi.org/10.1007/978-3-642-05408-2_9

  • Bao J, Zheng Y, Mokbel MF (2012) Location-based and preference-aware recommendation using sparse geo-social networking data. In: Proceedings of the 20th international conference on advances in geographic information systems. ACM, pp 199–208

  • Bellotti V, Price B, Rasmussen P, Roberts M, Schiano DJ, Walendowski A, Begole B, Chi EH, Ducheneaut N, Fang J, Isaacs E, King T, Newman MW, Partridge K (2008) Activity-based serendipitous recommendations with the Magitti mobile leisure guide. In: Proceeding of the twenty-sixth annual CHI conference on Human factors in computing systems—CHI ’08, pp 1157–1166

  • Bergé LP, Serrano M, Perelman G, Dubois E (2014) Exploring smartphone-based interaction with overview+ detail interfaces on 3D public displays. In: Proceedings of the 16th international conference on human–computer interaction with mobile devices and services. ACM, pp 125–134

  • Braunhofer M, Ricci F (2017) Selective contextual information acquisition in travel recommender systems. Inf Technol Tour 17(1):5–29

    Article  Google Scholar 

  • Braunhofer M, Elahi M, Ricci F (2014) Techniques for cold-starting context-aware mobile recommender systems for tourism. Intell Artif 8(2):129–143

    Google Scholar 

  • Calabrese F, di Lorenzo G (2011) Estimating origin—destination flows using mobile phone location data. Cell 10(2011):36–44

    Google Scholar 

  • Calabrese F, Reades J, Ratti C (2010) Eigenplaces: segmenting space through digital signatures. Pervasive Comput 9(2010):78–84

    Article  Google Scholar 

  • Carter S, Marlow J, Cooper M (2017) No app needed: enabling mobile phone communication with a tourist kiosk using cameras and screens. In: Proceedings of the 2017 ACM international joint conference on pervasive and ubiquitous computing and proceedings of the 2017 ACM international symposium on wearable computers. ACM, pp 221–224

  • Cheverst K, Davies N, Mitchell K, Friday A, Efstratiou C (2000) Developing a context-aware electronic tourist guide: some issues and experiences. In: Proceedings of the SIGCHI conference on human factors in computing systems—CHI ’00, pp 17–24

  • Churchill EF, Nelson L, Denoue L, Girgensohn A (2003) The plasma poster network: posting multimedia content in public places. Interfaces 1(2003):599–606

    Google Scholar 

  • Colomo-Palacios R, García-Peñalvo FJ, Stantchev V, Misra S (2017) Towards a social and context-aware mobile recommendation system for tourism. Pervasive Mobile Comput 38:505–515

    Article  Google Scholar 

  • Crandall DJ, Backstrom L, Huttenlocher D, Kleinberg J (2009) Mapping the world’s photos. In: Proceedings of the 18th international conference on world wide web WWW, p 761

  • Fisher D (2007) Hotmap: looking at geographic attention. IEEE Trans Graph 13(6):1184–1191

    Article  Google Scholar 

  • Girardin F, Calabrese F, Fiore FD, Ratti C, Blat J (2011) Digital footprinting: uncovering tourists with user-accessed digital footprinting: uncovering tourists with user-generated content. Pervasive Comput 7(2011):36–43

    Google Scholar 

  • Grubert J, Pahud M, Grasset R, Schmalstieg D, Seichter H (2015) The utility of magic lens interfaces on handheld devices for touristic map navigation. Pervasive Mobile Comput 18:88–103

    Article  Google Scholar 

  • Herzog D (2017) Recommending a sequence of points of interest to a group of users in a mobile context. In: Proceedings of the eleventh ACM conference on recommender systems. ACM, pp 402–406

  • Hinrichs U, Carpendale S, Valkanova N, Kuikkaniemi K, Jacucci G, Vande Moere A (2013) Interactive public displays. IEEE Comput Graph Appl 33(2):25–27

    Article  Google Scholar 

  • Jiang B, Yin J, Zhao S (2008) Characterizing human mobility patterns in a large street network. Phys Rev E 80:17

    Google Scholar 

  • Kim M, Kotz D (2005) Modeling users’ mobility among WiFi access points. In: WiTMeMo 05 papers presented at the 2005 workshop on wireless traffic measurements and modeling, pp 19–24

  • Kjeldskov J, Graham C, Pedell S, Vetere F, Howard S, Balbo S, Davies J (2005) Evaluating the usability of a mobile guide: the influence of location, participants and resources. Behav Inf Technol 24:51–65

    Article  Google Scholar 

  • Koch M, Kötteritzsch A, Fietkau J (2017) Information radiators: using large screens and small devices to support awareness in urban space. In: Proceedings of the international conference on web intelligence. ACM, pp 1080–1084

  • Kostakos V, O’Neill E, Penn A, Roussos G, Papadongonas D (2010) Brief encounters: sensing, modeling and visualizing urban mobility and copresence networks. ACM Trans Comput Hum Interact 17(2010):1–38

    Article  Google Scholar 

  • Linden T, Heikkinen T, Kostakos V, Ferreira D, Ojala T (2012) Towards multi-application public interactive displays. PerDis 2012(2012):1–9

    Google Scholar 

  • Lindqvist J, Cranshaw J, Wiese J, Hong J, Zimmerman J (2011) I’m the mayor of my house: examining why people use foursquare-a social-driven location sharing application. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 2409–2418

  • Majid A, Chen L, Chen G, Mirza HT, Hussain I, Woodward J (2013) A context-aware personalized travel recommendation system based on geotagged social media data mining. Int J Geogr Inf Sci 27(4):662–684

    Article  Google Scholar 

  • McCarthy JF, Costa TJ, Liongosari ES (2001) UniCast, OutCast and GroupCast: three steps toward ubiquitous, peripheral displays. Proc UbiComp 2001:332–345

    Google Scholar 

  • Meehan K, Lunney T, Curran K, McCaughey A (2013) Context-aware intelligent recommendation system for tourism. In: 2013 IEEE international conference on pervasive computing and communications workshops (PERCOM workshops). IEEE, pp 328–331

  • Noulas A, Scellato S, Lambiotte R, Pontil M, Mascolo C (2012) A tale of many cities: universal patterns in human urban mobility. PLoS One 7(5):e37027

    Article  Google Scholar 

  • O’Hare GM, O’Grady MJ (2003) Gulliver’s Genie: a multi-agent system for ubiquitous and intelligent content delivery. Comput Commun 26(11):1177–1187

    Article  Google Scholar 

  • Poslad S, Laamanen H, Malaka R, Nick A, Buckle P, Zipl A (2001) CRUMPET: creation of user-friendly mobile services personalised for tourism, pp 28–32.

  • Quercia D, di Lorenzo G, Calabrese F, Ratti C (2011) Mobile phones and outdoor advertising: measurable advertising. IEEE Pervasive Comput 10(2011):28–36

    Article  Google Scholar 

  • Rattenbury T, Good N, Naaman M (2007) Towards automatic extraction of event and place semantics from flickr tags. In: Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval SIGIR 07, p 103

  • Savage NS, Baranski M, Chavez NE, Höllerer T (2011) I’m feeling LoCo: a location based context aware recommendation system. In: Proceedings of the 8th international symposium on location-based services (LBS’11)

  • Schwinger W, Grün C, Pröll B, Retschitzegger W, Schauerhuber A (2005) Context-awareness in mobile tourism guides—a comprehensive survey. Rapport technique. Johannes Kepler University Linz, Linz

    Google Scholar 

  • Souffriau W, Vansteenwegen P, Vertommen J, Berghe GV, Oudheusden DV (2008) A personalized tourist trip design algorithm for mobile tourist guides. Appl Artif Intell 22(10):964–985. https://doi.org/10.1080/08839510802379626

    Article  Google Scholar 

  • Tammet T, Luberg A, Priit J (2013) Sightsmap: crowd-sourced popularity of world places. Inf Commun Technol Tour 2013:314–325

    Google Scholar 

  • Umanets A, Ferreira A, Leite N (2014) GuideMe—a tourist guide with a recommender system and social interaction. Proc Technol 17:407–414

    Article  Google Scholar 

  • Valls JF, Sureda J, Valls-Tuñon G (2014) Attractiveness analysis of European tourist cities. J Travel Tour Mark 31(2):178–194

    Article  Google Scholar 

  • van Setten M, Pokraev S, Koolwaaij J (2004) Context-aware recommendations in the mobile tourist application COMPASS. Adaptive hypermedia and adaptive web-based systems. Springer, Berlin

    Google Scholar 

  • Komninos A, Besharat J, Ferreira D, Garofalakis J (2013a) HotCity: enhancing ubiquitous maps with social context heatmaps. In Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia. ACM, Lulea, p 52. https://doi.org/10.1145/2541831.2543694

  • Komninos A, Stefanis V, Plessas A, Besharat J (2013b) Capturing urban dynamics with scarce check-in data. IEEE Pervasive Comput 12(4):20–28

  • Yang D, Zhang D, Yu Z, Yu Z (2013) Fine-grained preference-aware location search leveraging crowdsourced digital footprints from LBSNs. In: Proceedings of the 2013 ACM international joint conference on pervasive and ubiquitous computing. ACM, pp 479–488

Download references

Acknowledgements

This work is partially funded by the Academy of Finland (Grants 276786-AWARE, 285062-iCYCLE, 286386-CPDSS, 285459-iSCIENCE), and the European Commission (Grants PCIG11-GA-2012-322138, 645706-GRAGE, and 6AIKA-A71143-AKAI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Komninos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komninos, A., Besharat, J., Ferreira, D. et al. Where’s everybody? Comparing the use of heatmaps to uncover cities’ tacit social context in smartphones and pervasive displays. Inf Technol Tourism 17, 399–427 (2017). https://doi.org/10.1007/s40558-017-0092-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40558-017-0092-5

Keywords

Navigation