Advertisement

Information Technology & Tourism

, Volume 17, Issue 1, pp 31–54 | Cite as

Recommending a sequence of interesting places for tourist trips

  • Wolfgang Wörndl
  • Alexander Hefele
  • Daniel Herzog
Original Research

Abstract

Tourist trip design problems (TTDP) support tourists in creating trips composed of multiple points of interest (POIs) or other travel-related items. We present a novel approach to generate routes comprising different POIs with a reasonable routing for a short city trip. In our scenario, a user enters a start and an end point in a web application together with preferences and receives a walking route with interesting places to visit along the way. The place discovery is based on retrieving arbitrarily rated places from Foursquare, so it is not restricted to certain cities or regions. The developed scoring mechanism rates the level of interest of a POI and accounts for the number of places per category. Discovered places are then combined to a practical route using a constraint-free and a constraint-based version of our algorithm. The algorithms are based on Dijkstra’s algorithm to find the shortest path in a graph. We show that Dijkstra’s algorithm can be modified to find not only the shortest paths, but also trips that solve the TTDP by maximizing the entertainment for the user while respecting time and budget constraints. The solution has been implemented in a practical web application. We conducted a user study showing that our test users highly accepted the application. Improvement with regard to user preferences for place categories lead to additional benefits in terms of user satisfaction with the routing and the match with their preferences. Finally, we outline challenges for future work on TTDPs in this article.

Keywords

Recommender system Tourist trip design problem City trip planning Path finding Travel 

Notes

Acknowledgements

This work is part of the TUM Living Lab Connected Mobility (TUM LLCM) project and has been funded by the Bavarian Ministry of Economic Affairs and Media, Energy and Technology (StMWi) through the Center Digitisation. Bavaria, an initiative of the Bavarian State Government.

References

  1. Angelelli E, Archetti C, Vindigni M (2014) The clustered orienteering problem. Eur J Oper Res 238:404–414. doi: 10.1016/j.ejor.2014.04.006 CrossRefGoogle Scholar
  2. Baral R, Li T (2016) MAPS: a multi aspect personalized POI recommender system. In: Proceedings of the 10th ACM conference on recommender systems. ACM, Boston, pp 281–284. doi: 10.1145/2959100.2959187
  3. Benouaret I, Lenne D (2016) A package recommendation framework for trip planning activities. In: Proceedings of the 10th ACM conference on recommender systems. ACM, Boston, pp 203–206. doi: 10.1145/2959100.2959183
  4. Borràs J, Moreno A, Valls A (2014) Intelligent tourism recommender systems: a survey. Expert Syst Appl 41:7370–7389. doi: 10.1016/j.eswa.2014.06.007 CrossRefGoogle Scholar
  5. Campbell AM, Gendreau M, Thomas BW (2011) The orienteering problem with stochastic travel and service times. Ann Oper Res 186:61–81. doi: 10.1007/s10479-011-0895-2 CrossRefGoogle Scholar
  6. Chao IM, Golden BL, Wasil EA (1996) The team orienteering problem. Eur J Oper Res 88:464–474. doi: 10.1016/0377-2217(94)00289-4 CrossRefGoogle Scholar
  7. Choudhury MD, Feldman M, Amer-Yahia S, Golbandi N, Lempel R, Yu C (2010) Automatic construction of travel itineraries using social breadcrumbs. In: Proceedings of the 21st ACM conference on hypertext and hypermedia. ACM, Toronto, pp 35–44. doi: 10.1145/1810617.1810626
  8. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271. doi: 10.1007/bf01386390 CrossRefGoogle Scholar
  9. Erdoǧan G, Laporte G (2013) The orienteering problem with variable profits. Networks 61:104–116. doi: 10.1002/net.21496 CrossRefGoogle Scholar
  10. Fomin FV, Lingas A (2002) Approximation algorithms for time-dependent orienteering. Inform Process Lett 83:57–62. doi: 10.1016/S0020-0190(01)00313-1 CrossRefGoogle Scholar
  11. Garcia A, Arbelaitz O, Linaza MT, Vansteenwegen P, Souffriau W (2010) Personalized tourist route generation. Proceedings of the 10th international conference on Current trends in web engineering. Springer, Vienna, pp 486–497CrossRefGoogle Scholar
  12. Gavalas D, Kenteris M, Konstantopoulos C, Pantziou G (2012) Web application for recommending personalised mobile tourist routes. IET Softw 6:313–322. doi: 10.1049/iet-sen.2011.0156 CrossRefGoogle Scholar
  13. Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G (2014a) A survey on algorithmic approaches for solving tourist trip design problems. J Heuristics 20:291–328. doi: 10.1007/s10732-014-9242-5 CrossRefGoogle Scholar
  14. Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G (2014b) Mobile recommender systems in tourism. J Netw Comput Appl 39:319–333. doi: 10.1016/j.jnca.2013.04.006 CrossRefGoogle Scholar
  15. Geem ZW, Tseng C-L, Park Y (2005) Harmony search for generalized orienteering problem: best touring in China. In: Proceedings of the first international conference on advances in natural computation—volume part III. Springer, Changsha, pp 741–750. doi: 10.1007/11539902_91
  16. Gunawan A, Lau HC, Vansteenwegen P (2016) Orienteering Problem: a survey of recent variants, solution approaches and applications. Eur J Oper Res. doi: 10.1016/j.ejor.2016.04.059 Google Scholar
  17. Herzog D, Wörndl W (2014) A travel recommender system for combining multiple travel regions to a composite trip. In: CBRecSys@ RecSys, pp 42–48Google Scholar
  18. Herzog D, Wörndl W (2016) Exploiting item dependencies to improve tourist trip recommendations. In: Workshop on Recommenders in Tourism (RecTour), ACM Recommender Systems Conference (RecSys 2016). Boston, Massachusetts, USAGoogle Scholar
  19. Hu Q, Lim A (2014) An iterative three-component heuristic for the team orienteering problem with time windows. Eur J Oper Res 232:276–286. doi: 10.1016/j.ejor.2013.06.011 CrossRefGoogle Scholar
  20. İlhan T, Iravani SMR, Daskin MS (2008) The orienteering problem with stochastic profits. IIE Trans 40:406–421. doi: 10.1080/07408170701592481 CrossRefGoogle Scholar
  21. Iltifat H (2014) Generation of paths through discovered places based on a recommender system, Master’s Thesis. Technical University of Munich (TUM)Google Scholar
  22. Kang M (2013) Integer programming formulation of finding cheapest ticket combination over multiple tourist attractions. In: Cantoni L, Xiang Z (eds) Information and communication technologies in tourism 2013: proceedings of the international conference in Innsbruck, Springer, Berlin, pp 131–143. doi: 10.1007/978-3-642-36309-2_12
  23. Laß C, Wörndl W, Herzog D (2016) A multi-tier web service and mobile client for city trip recommendations. In: Proceedings of the 8th EAI international conference on mobile computing, applications and services (MobiCASE), CambridgeGoogle Scholar
  24. Lim KH, Chan J, Leckie C, Karunasekera S (2015) Personalized tour recommendation based on user interests and points of interest visit durations. Proceedings of the 24th international conference on artificial intelligence. AAAI Press, Buenos Aires, pp 1778–1784Google Scholar
  25. Mahmood T, Ricci F, Venturini A (2009) Improving recommendation effectiveness: adapting a dialogue strategy in online travel planning. Inf Technol Tourism 11:285–302CrossRefGoogle Scholar
  26. Masthoff J (2015) Group recommender systems: aggregation, satisfaction and group attributes. In: Ricci F, Rokach L, Shapira B (eds) Recommender systems handbook. Springer US, Boston, pp 743–776. doi: 10.1007/978-1-4899-7637-6_22
  27. Melià-Seguí J, Zhang R, Bart E, Price B, Brdiczka O (2012) Activity duration analysis for context-aware services using foursquare check-ins. In: Proceedings of the 2012 international workshop on self-aware internet of things. ACM, San Jose, pp 13–18. doi: 10.1145/2378023.2378027
  28. Murat Afsar H, Labadie N (2013) Team orienteering problem with decreasing profits. Electron Notes Discrete Math 41:285–293. doi: 10.1016/j.endm.2013.05.104 CrossRefGoogle Scholar
  29. Quercia D, Schifanella R, Aiello LM (2014) The shortest path to happiness: recommending beautiful, quiet, and happy routes in the city. In: Proceedings of the 25th ACM conference on hypertext and social media. ACM, Santiago, pp 116–125. doi: 10.1145/2631775.2631799
  30. Ricci F (2002) Travel recommender systems. IEEE Intell Syst 17:55–57Google Scholar
  31. Ricci F (2014) Recommender systems: models and techniques. In: Alhajj R, Rokne J (eds) Encyclopedia of social network analysis and mining. Springer, New York, pp 1511–1522. doi: 10.1007/978-1-4614-6170-8_88
  32. Ricci F, Nguyen QN (2006) MobyRek: a conversational recommender system for on-the-move travellers. In: Fesenmaier DR, Wöber KW, Werthner H (eds) Destination recommendation systems: behavioural foundations and applications, pp 281–294Google Scholar
  33. Ricci F et al (2006) DieToRecs: a case-based travel advisory system. In: Fesenmaier DR, Wöber KW, Werthner H (eds) Destination recommendation systems: behavioural foundations and applications, pp 227–239Google Scholar
  34. Ricci F, Rokach L, Shapira B (2015) Recommender systems handbook. Springer US, New York. doi: 10.1007/978-1-4899-7637-6
  35. Rodríguez B, Molina J, Pérez F, Caballero R (2012) Interactive design of personalised tourism routes. Tourism Manag 33:926–940. doi: 10.1016/j.tourman.2011.09.014 CrossRefGoogle Scholar
  36. Shimazu H (2001) ExpertClerk: navigating shoppers’ buying process with the combination of asking and proposing. Proceedings of the 17th international joint conference on artificial intelligence, vol 2. Morgan Kaufmann Publishers Inc., Seattle, pp 1443–1448Google Scholar
  37. Souffriau W, Vansteenwegen P, Vertommen J, Berghe GV, Oudheusden DV (2008) A personalized tourist trip design algorithm for mobile tourist guides. Appl Artif Intell 22:964–985. doi: 10.1080/08839510802379626 CrossRefGoogle Scholar
  38. Souffriau W, Vansteenwegen P, Vanden Berghe G, Van Oudheusden D (2011) The planning of cycle trips in the province of East Flanders. Omega 39:209–213. doi: 10.1016/j.omega.2010.05.001 CrossRefGoogle Scholar
  39. Sylejmani K, Dorn J, Musliu N (2012) A tabu search approach for multi constrained team orienteering problem and its application in touristic trip planning. In: 12th international conference on hybrid intelligent systems (HIS), pp 300–305. doi: 10.1109/HIS.2012.6421351
  40. Tanahashi Y, Ma KL (2013) OnMyWay: a task-oriented visualization and interface design for planning road trip itinerary. In: International conference on cyberworlds (CW), pp 199–205. doi: 10.1109/CW.2013.16
  41. Traunmueller M, Schieck AFg (2013) Introducing the space recommender system: how crowd-sourced voting data can enrich urban exploration in the digital era. In: Proceedings of the 6th international conference on communities and technologies. ACM, Munich, pp 149–156. doi: 10.1145/2482991.2482995
  42. Tsiligirides T (1984) Heuristic methods applied to orienteering. J Oper Res Soc 35:797–809. doi: 10.1057/jors.1984.162 CrossRefGoogle Scholar
  43. Vansteenwegen P, Van Oudheusden D (2007) The mobile tourist guide: an OR opportunity. OR Insight 20:21–27. doi: 10.1057/ori.2007.17 CrossRefGoogle Scholar
  44. Vansteenwegen P, Souffriau W, Vanden Berghe G, Van Oudheusden D (2009) Iterated local search for the team orienteering problem with time windows. Comput Oper Res 36:3281–3290. doi: 10.1016/j.cor.2009.03.008 CrossRefGoogle Scholar
  45. Vansteenwegen P, Souffriau W, Berghe GV, Oudheusden DV (2011a) The city trip planner. Expert Syst Appl 38:6540–6546. doi: 10.1016/j.eswa.2010.11.085 CrossRefGoogle Scholar
  46. Vansteenwegen P, Souffriau W, Oudheusden DV (2011b) The orienteering problem: a survey. Eur J Oper Res 209:1–10. doi: 10.1016/j.ejor.2010.03.045 CrossRefGoogle Scholar
  47. Venturini A, Ricci F (2006) Applying Trip@dvice recommendation technology to http://www.visiteurope.com. In: Proceedings of the 2006 conference on ECAI 2006: 17th European conference on artificial intelligence. IOS Press, Riva del Garda, pp 607–611
  48. Verbeeck C, Vansteenwegen P, Aghezzaf EH (2014) An extension of the arc orienteering problem and its application to cycle trip planning. Transport Res E-Log 68:64–78. doi: 10.1016/j.tre.2014.05.006 CrossRefGoogle Scholar
  49. Xie M, Lakshmanan LVS, Wood PT (2011) CompRec-Trip: a composite recommendation system for travel planning. In: Proceedings of the 2011 IEEE 27th international conference on data engineering. IEEE Computer Society, Hannover, pp 1352–1355. doi: 10.1109/icde.2011.5767954
  50. Zheng Y, Xie X (2011) Learning travel recommendations from user-generated GPS traces. ACM Trans Intell Syst Technol 2:1–29. doi: 10.1145/1889681.1889683 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceTechnical University of Munich (TUM)MunichGermany

Personalised recommendations