Skip to main content
Log in

Influence of Chemical Composition Variations on Densification During the Sintering of MOX Materials

  • Published:
Metallurgical and Materials Transactions E

Abstract

The mixed uranium-plutonium oxide (MOX) fabrication process is based on the preparation of UO2 and PuO2 powders. The mixture is pelletized before being sintered at 1973 K (1700 °C) in a reducing atmosphere of Ar/4pctH2/H2O. This paper shows how the densification of MOX fuel is affected during sintering by the moisture content of the gas, the plutonium content of the fuel, and the carbon impurity content in the raw materials. MOX densification can be monitored through dilatometric measurements and gas releases can be continuously analyzed during sintering in terms of their quantity and quality. Variations in the oxygen content in the fuel can be continuously recorded by coupling the dilatometer furnace with an oxygen measurement at the gas outlet. Any carbon-bearing species released, such as CO, can be also linked to densification phenomena when a gas chromatograph is installed at the outlet of the dilatometer. Recommendations on the choice of sintering atmosphere that best optimizes the fuel characteristics have been given on the basis of the results reported in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Matzke, J. Nucl. Mater. 114, 121–135 (1983)

    Article  Google Scholar 

  2. H. Matzke, J. Chem. Soc. Faraday Trans. 83, 1121–1142 (1987)

    Article  Google Scholar 

  3. S. Berzati, S. Vaudez, R.C. Belin, J. Lechelle, Y. Marc, J.C. Richaud, J.M. Heintz, J. Nucl. Mater. 447, 115–124 (2014)

    Article  Google Scholar 

  4. S. Vaudez, R.C. Belin, L. Aufore, P. Sornay, S. Grandjean, J. Nucl. Mater. 442, 227–234 (2013)

    Article  Google Scholar 

  5. Y. Lin, K. Hwang, Mater. Trans. 51(12), 2251–2258 (2010)

    Article  Google Scholar 

  6. B. Balzer, M. Hagemeister, P. Kocher, L.J. Gauckler, J. Am. Ceram. Soc. 87(10), 1932–1938 (2004)

    Article  Google Scholar 

  7. B. Yoon, E. Chin, S. Kang. J. Am. Ceram. Soc. 91(12), 4121–4124 (2008)

    Article  Google Scholar 

  8. O.A. Shlyakhtin, Y.J. Oh, Y.D. Tretyakov, J. Eur. Cer. Soc. 20, 2047–2054 (2000)

    Article  Google Scholar 

  9. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to ceramics (John Wiley, New York, 1973), pp. 461–468

    Google Scholar 

  10. T. Sata, Ceram. Int. 20, 39–47 (1994)

    Article  Google Scholar 

  11. D. Bernache-Assolant, J.-P. Bonnet , Aspects physico-chimiques du frittage – frittage en phase solide, Chimie-Physique du frittage – Forceram – formation céramique, 1993

  12. A. Poletti A., PhD Thesis Université de Limoges, 2001

  13. S. Vaudez, J. Lechelle, S. Berzati, J.M. Heintz, J. Nucl. Mater. 460, 221–225 (2015)

    Article  Google Scholar 

  14. T. Kutty, P.V. Hegde, K.B. Khan, U. Basak, S.N. Pillai, A.K. Sengupta, G.C. Jain, S. Majumdar, H.S. Kamath, D.S.C. Purushotham, J. Nucl. Mater. 305, 159–168 (2002)

    Article  Google Scholar 

  15. Y. Harada. J. Nucl. Mater. 245, 217–223 (1997)

    Article  Google Scholar 

  16. C. Guéneau, N. Dupin, B. Sundman, C. Martial, J.C. Dumas, S. Gosse, S. Chatain, F. De Bruycker, D. Manara, R.J.M. Konings, J. Nucl. Mater. 419, 145–167 (2011)

    Article  Google Scholar 

  17. R.M. Orr, H.E. Sims, R.J. Taylor, J. Nucl. Mater. 465, 756–773 (2015)

    Article  Google Scholar 

  18. X. Wang and G. Li, Proc 180, Pu Futures 2014, Las Vegas

  19. J.D. Farr, R.K. Schulze, M.P. Neu, J. Nucl. Mater. 328, 124–136 (2004)

    Article  Google Scholar 

  20. K. Asakura, K. Takeuchi, J. Nucl. Mater. 348, 165–173 (2006)

    Article  Google Scholar 

  21. Y. Susuki, Y. Arai, T. Sasayama, H. Watanabe, J. Nuc, Mat 101, 200–206 (1981)

    Google Scholar 

  22. A.K. Sengupta, R. Agarwal, H.S. Kamath, Compr. Nucl. Mater. 3(03), 55–86 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vaudez.

Additional information

Manuscript submitted December 23, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaudez, S., Marlot, C. & Lechelle, J. Influence of Chemical Composition Variations on Densification During the Sintering of MOX Materials. Metallurgical and Materials Transactions E 3, 107–111 (2016). https://doi.org/10.1007/s40553-016-0074-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40553-016-0074-0

Keywords

Navigation