Skip to main content

Investigation of the heat distribution in dry friction systems during fade and recovery using fiber-optic sensing and infrared technology

Abstract

The design of dry-running friction pairings and systems determines not only their installation space and costs, but also their reliability under critical load conditions, for example in emergencies, in the case of faults, and in the event of misuse. While knowledge of the contact pattern is highly important for the development of clutches and brakes, the contact-related measurement of the temperature of these systems has not yet been solved in a satisfactory manner. Despite its importance, the temperature distribution has only been measured in a few studies. Typically, temperature measurements of complete clutches and brakes are carried out using thermocouples only. In this study, a new innovative test setup is presented. This setup is able to measure the heat distribution of the lining and the steel disk of a brake with high spatial resolution by means of fiber optic sensing technology and thermography. As a novelty, it enables measurement of the heat distribution and allows to correlate it with the fade and recovery behavior. Contrary to the expectations, the contact pattern is heterogeneous in circumferential direction. Possible causes are discussed using simulation results. Along with surface analysis, the new setup contributes to the investigation of the causes of fade and recovery.

References

  1. [1]

    Bijwe J, Nidhi, Majumdar N, Satapathy B K. Influence of modified phenolic resins on the fade and recovery behavior of friction materials. Wear 259(7–12): 1068–1078 (2005)

    Article  Google Scholar 

  2. [2]

    Lührsen B. Wirkung der thermischen Belastung auf die Reibpaarungen großer Trommel- und Scheibenbremsen. Ph.D Thesis. Berlin (Germany): TU Berlin, 1987.

    Google Scholar 

  3. [3]

    Gauger D. Wirkmechanismen und Belastungsgrenzen von Reibpaarungen trockenlaufender Kupplungen. Ph.D Thesis. Berlin (Germany): Technische Universität Berlin, 1998.

    Google Scholar 

  4. [4]

    Gopal P, Dharani L R, Blum F D. Fade and wear characteristics of a glass-fiber-reinforced phenolic friction material. Wear 174(1–2): 119–127 (1994)

    Article  Google Scholar 

  5. [5]

    Musiol F. Erklärung der Vorgänge in der Kontaktzone von trockenlaufenden Reibpaarungen über gesetzmässig auftretende Phänomene im Reibprozess. Ph.D Thesis. Berlin (Germany): Technische Universität Berlin, 1994.

    Google Scholar 

  6. [6]

    Severin D, Gauger D. Leistungsgrenzen von Trockenkupplungen. Frankfurt am Main (Germany): Forschungsvereinigung Antriebstechnik e.V., 1996.

    Google Scholar 

  7. [7]

    Rakowski W A. The surface layer of friction plastics. Wear 65(1): 21–27 (1980)

    Article  Google Scholar 

  8. [8]

    Wirth A, Eggleston D, Whitaker R. A fundamental tribochemical study of the third body layer formed during automotive friction braking. Wear 179(1–2): 75–81 (1994)

    Article  Google Scholar 

  9. [9]

    Eriksson M, Jacobson S. Tribological surfaces of organic brake pads. Tribol Int 33(12): 817–827 (2000)

    Article  Google Scholar 

  10. [10]

    Eriksson M, Lord J, Jacobson S. Wear and contact conditions of brake pads: Dynamical in situ studies of pad on glass. Wear 249(3–4): 272–278 (2001)

    Article  Google Scholar 

  11. [11]

    Dmitriev A I, Österle W, Kloß H. Numerical simulation of typical contact situations of brake friction materials. Tribol Int 41(1): 1–8 (2008)

    Article  Google Scholar 

  12. [12]

    Buckley D H. Friction, Wear, and Lubrication in Vacuum. Washington (USA): National Aeronautics and Space Adminisatration, 1971.

    Google Scholar 

  13. [13]

    Kim S H, Lee H S. Effect of pressure on tribological characteristics between sintered friction materials and steel disk. Int J Precis Eng Manuf 12(4): 643–650 (2011)

    Article  Google Scholar 

  14. [14]

    Herring J M. Mechanism of Brake Fade in Organic Brake Linings. In Proceedings of the 1967 Automotive Engineering Congress and Exposition, Detroit, USA, 1967.

  15. [15]

    Fidlin A, Bäuerle S, Boy F. Modelling of the gas induced fading of organic linings in dry clutches. Tribol Int 92: 559–566 (2015)

    Article  Google Scholar 

  16. [16]

    Cristol-Bulthé A L, Desplanques Y, Degallaix G. Coupling between friction physical mechanisms and transient thermal phenomena involved in pad-disc contact during railway braking. Wear 263(7–12): 1230–1242 (2007)

    Article  Google Scholar 

  17. [17]

    Ostermeyer G P. On the dynamics of the friction coefficient. Wear 254(9): 852–858 (2003)

    Article  Google Scholar 

  18. [18]

    Poeste T. Untersuchungen zu reibungsinduzierten Veränderungen der Mikrostruktur und Eigenspannungen im System Bremse. Ph.D Thesis. Berlin (Germany): Technische Universität Berlin, 2005.

    Google Scholar 

  19. [19]

    Ostermeyer G P. Dynamik der Reibung in Bremsen. Braunschweig (Germany): VDI-Berichte, 2002.

    Google Scholar 

  20. [20]

    Barber J R. The influence of thermal expansion on the friction and wear process. Wear 10(2): 155–159 (1967)

    Article  Google Scholar 

  21. [21]

    Tanaka K, Ueda S, Noguchi N. Fundamental studies on the brake friction of resin-based friction materials. Wear 23(3): 349–365 (1973)

    Article  Google Scholar 

  22. [22]

    Panier S, Dufrénoy P, Weichert D. An experimental investigation of hot spots in railway disc brakes. Wear 256(7–8): 764–773 (2004)

    Article  Google Scholar 

  23. [23]

    Dörsch S. Periodische Veränderung Lokaler Kontaktgrößen in Reibpaarungen Trockenlaufender Bremsen. Düsseldorf (Germany): VDI-Verlag, 2004.

    Google Scholar 

  24. [24]

    Kleinlein C. Beschreibung von Reibpaarungen in trocken laufenden Kupplungen und Bremsen durch ihre globalen und lokalen Reibungs- und Verschleißeigenschaften. Baden-Baden (Germany): VDI-Verlag, 2006.

    Google Scholar 

  25. [25]

    Mitariu-Faller M. Methods and processes for development of friction systems with advanced ceramics exemplified by dry running clutch systems for automotive. Ph.D Thesis. Karlsruhe (Germany): Karlsruhe Institute of Technology, 2009.

    Google Scholar 

  26. [26]

    Kniel J, Gommeringer M, Lorentz B. A new approach for the optimization of the thermo-mechanical behaviour of dry-running clutches using fibre-optic sensing technology with high spatial measurement density. Proc Inst Mech Eng, Part J: J Eng Tribol 229(8): 1003–1010 (2015)

    Article  Google Scholar 

  27. [27]

    Weidler A, Beitler H, Lassi S, Keller U. Clutch protection function-clutch design one size smaller!? Düsseldorf (Germany): VDI Verlag, 2017.

    Google Scholar 

  28. [28]

    Chan D, Stachowiak G W. Review of automotive brake friction materials. Proc Inst Mech Eng, Part D: J Autom Eng 218(9): 953–966 (2004)

    Article  Google Scholar 

  29. [29]

    Albers A, Ott S, Klotz T. Abschlussbericht Kupplungsmodell III: Erholung Trockenlauf. Frankfurt am Main (Germany): Forschungsvereinigung Antriebstechnik e.V., 2020.

    Google Scholar 

  30. [30]

    Albers A, Ott S, Kniel J, Eisele M, Basiewicz M. Investigation of the thermo-mechanical behaviour of clutches using fibre optic sensing technology with high spatial measurement density. Proc Inst Mech Eng, Part J: J Eng Tribol 232(1): 26–35 (2018)

    Article  Google Scholar 

  31. [31]

    Samiec D. Verteilte faseroptische Temperatur- und Dehnungsmessung mit sehr hoher Ortsauflösung. Photonik 6: 34–37 (2011)

    Article  Google Scholar 

  32. [32]

    Klotz T, Ott S, Albers A. Experimentelle Ermittlung und Identifizierung der temporären Schädigungsgrenze trockenlaufender Friktionspaarungen. In Proceedings of the 59th Tribologiefachtagung Reibung, Schmierung und Verschleiß, Göttingen, Deutschland, 2018.

  33. [33]

    Klotz T, Ott S, Albers A. Analyse des Schädigungs- und Erholungsverhaltens trockenlaufender Friktionspaarungen. Forsch Ingenieurwes 83(2): 209–218 (2019)

    Article  Google Scholar 

  34. [34]

    Klotz T, Bauer T, Ott S, Albers A. Synthese von Beanspruchungskollektiven zur Erholung trockenlaufender Friktionspaarungen und -systeme. In Proceedings of the 60th Tribologiefachtagung Reibung, Schmierung und Verschleiß, Göttingen, Germany, 2019: 182–190.

  35. [35]

    Information. https://unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/R090r3e_01.pdf, 2012

  36. [36]

    VDI Fachbereich Produktentwicklung und Mechatronik. VDI 2241 Blatt 1: Schaltbare fremdbetätigte Reibkupplungen und -Bremsen. Begriffe, Bauarten, Kennwerte, Berechnungen. Düsseldorf (Germany): VDI Verlag, 1982.

    Google Scholar 

  37. [37]

    Kleppmann W. Versuchsplanung: Produkte und Prozesse Optimieren 8. Hanser (München): Hanser-Verlag, 2013.

    Book  Google Scholar 

  38. [38]

    Wichmann S. Modellierung des thermischen Verhaltens trockenlaufender Friktionspaarungen mittels der Finiten-Element-Methode am Beispiel des Trockenreibprüfstands. M.Sc. Thesis. Karlsruhe (Germany): Karlsruhe Institute of Technology, 2018.

    Google Scholar 

  39. [39]

    Merkel P. Modelling of the temperature behavior and experimental investigations of the friction lining shape on the friction behavior on the example of dry running friction systems. Ph.D Thesis. Karlsruhe (Germany): Karlsruhe Institute of Technology, 2016.

    Google Scholar 

  40. [40]

    Greenwood J A, Williamson J B P. Contact of nominally flat surfaces. Proc R Soc London. Ser A, Math Phys Sci 295(1442): 300–319 (1966)

    Google Scholar 

  41. [41]

    Klotz T, Ott S, Albers A. Eine Methode zur Ermittlung der anwendungsspezifischen Leistungsgrenze trockenlaufender Friktionspaarungen. Forsch Ingenieurwes 83(1): 11–20 (2019)

    Article  Google Scholar 

  42. [42]

    Ostermeyer G P. Friction and wear of brake systems. Forsch Ingenieurwes 66(6): 267–272 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank for the support of the research project. The project 19377-N of the Research Association for Drive Technology is funded as part of the program for the promotion of industrial community research by the Federal Ministry for Economic Affairs and Energy on the basis of a decision by the German Bundestag.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Klotz.

Additional information

Albert ALBERS. He is a professor and head of IPEK-Institute for Product Engineering at Karlsruhe Institute of Technology (KIT), received his Ph.D. degree in mechanical engineering from Leibniz University Hannover, Germany, in 1987. Before he started his position in Karlsruhe, he served as head of the Development Department and as deputy member of the executive board of a manufacturer of bearings, clutches, and gearboxes. His fundamental research philosophy is the simultaneous research on methods and processes of product engineering combined with the research on synthesis and validation of new technical systems whilst taking into account the significant role of the engineer within the product development process. He and his team investigate methods to analyze future market requirements and the innovation process of new product generations in the following research areas: Drive systems and mobility, clutches and brakes in drive systems, systems tribology, validation and NVH of technical systems, development and innovation management, and lightweight design and competence-oriented teaching methods.

Thomas KLOTZ. He is a research assistant at IPEK-Institute for Product Engineering at KIT, received his master degree in mechanical engineering from KIT, Germany, in 2016. Since then, he has been working in IPEK’s research group Clutches and Tribological Systems. His research interests include the tribology and NVH of dry-running clutches and brakes, in particular the development of new test methods and setups for the investigation of fade and recovery.

Chris FINK. He is a student research assistant at IPEK-Institute for Product Engineering at KIT, received his bachelor degree in mechanical engineering from KIT, Germany, in 2018. Following on from his bachelor’s thesis investigating the fade and recovery behaviour of dry-running friction systems, he joined the research group Clutches and Tribological Systems at IPEK. His field of activity includes the software implementation and experimental setup of the fiberoptic sensor.

Sascha OTT. He is a managing director of IPEK-Institute for Product Engineering at KIT and the KIT Center of Mobility Systems, obtained his degree in mechanical engineering from University of Karlsruhe, Germany, in 2002. Beside of his current position, he serves as the head of the research fields clutches and brakes in drive systems and guides among others the research activities in the fields of drive systems, systems tribology, and validation of technical systems.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Albers, A., Klotz, T., Fink, C. et al. Investigation of the heat distribution in dry friction systems during fade and recovery using fiber-optic sensing and infrared technology. Friction (2021). https://doi.org/10.1007/s40544-021-0506-4

Download citation

Keywords

  • dry-running clutch and brake
  • fade and recovery
  • high-resolution spatial temperature distribution measurement