Starr M B, Shi J, Wang X D. Piezopotential-driven redox reactions at the surface of piezoelectric materials. Angew Chem Int Ed 51(24): 5962–5966 (2012)
Article
Google Scholar
Yein W T, Wang Q, Liu Y, Li Y, Jian J H, Wu X H. Piezopotential induced molecular oxygen activation of defect-rich MoS2 ultrathin nanosheets for organic dye degradation in dark. J Environ Chem Eng 8(1): 103626 (2020)
Article
Google Scholar
Kang Z H, Qin N, Lin E Z, Wu J, Yuan B W, Bao D H. Effect of Bi2WO6 nanosheets on the ultrasonic degradation of organic dyes: Roles of adsorption and piezocatalysis. J Cleaner Prod 261: 121125 (2020)
Article
Google Scholar
Hao A Z, Ning X, Cao Y L, Xie J, Jia D Z. Boosting the piezocatalytic performance of Bi2WO6 nanosheets towards the degradation of organic pollutants. Mater Chem Front 4(7): 2096–2102 (2020)
Article
Google Scholar
Wei Y, Zhang Y W, Geng W, Su H R, Long M C. Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr(VI) in water. Appl Catal B-Environ 259: 118084 (2019)
Article
Google Scholar
Ismail M, Wu Z, Zhang L H, Ma J P, Jia Y M, Hu Y M, Wang Y J. High-efficient synergy of piezocatalysis and photocatalysis in bismuth oxychloride nanomaterial for dye decomposition. Chemosphere 228: 212–218 (2019)
Article
Google Scholar
You H L, Wu Z, Zhang L H, Ying Y R, Liu Y, Fei L F, Chen X X, Jia Y M, Wang Y J, Wang F F, et al. Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution. Angew Chem Int Ed 58(34): 11779–11784 (2019)
Article
Google Scholar
Feng W H, Yuan J, Zhang L L, Hu W T, Wu Z H, Wang X L, Huang X Y, Liu P, Zhang S Y. Atomically thin ZnS nanosheets: Facile synthesis and superior piezocatalytic H2 production from pure H2O. Appl Catal B-Environ 277: 119250 (2020)
Article
Google Scholar
Su R, Hsain A L, Wu M, Zhang D W, Hu X H, Wang Z P, Wang X J, Li F T, Chen X M, Zhu L N, et al. Nanoferroelectric for high efficiency overall water splitting under ultrasonic vibration. Angew Chem Int Ed 58(42): 15076–15081 (2019)
Article
Google Scholar
Wu J M, Chang W E, Chang Y T, Chang C K. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers. Adv Mater 28(19): 3718–3725 (2016)
Article
Google Scholar
Liang Z, Yan C F, Rtimi S, Bandara J. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Appl Catal B-Environ 241: 256–269 (2019)
Article
Google Scholar
Lin J H, Tsao Y H, Wu M H, Chou T M, Lin Z H, Wu J M. Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor. Nano Energy 31: 575–581 (2017)
Article
Google Scholar
Feng Y W, Ling L L, Xu Z M, Cao F L, Bian Z F. Engineering spherical lead zirconate titanate to explore the essence of piezocatalysis. Nano Energy 40: 481–486 (2017)
Article
Google Scholar
Zhu R J, Xu Y H, Bai Q, Wang Z M, Guo X L, Kimura H. Direct degradation of dyes by piezoelectric fibers through scavenging low frequency vibration. Chem Phys Lett 702: 26–31 (2018)
Article
Google Scholar
Liu D M, Song Y W, Xin Z J, Liu G X, Jin C C, Shan F K. High-piezocatalytic performance of eco-friendly (Bi1/2Na1/2)TiO3-based nanofibers by electrospinning. Nano Energy 65: 104024 (2019)
Article
Google Scholar
Nie Q, Xie Y F, Ma J M, Wang J L, Zhang G K. High piezo-catalytic activity of ZnO/Al2O3 nanosheets utilizing ultrasonic energy for wastewater treatment. J Cleaner Prod 242: 118532 (2020)
Article
Google Scholar
Li P C, Wu J, Wu Z, Jia Y M, Ma J P, Chen W P, Zhang L H, Yang J, Liu Y S. Strong tribocatalytic dye decomposition through utilizing triboelectric energy of barium strontium titanate nanoparticles. Nano Energy 63: 103832 (2019)
Article
Google Scholar
Lei H, Wu M, Mo F, Ji S, Dong X, Wu Z, Gao J, Yang Y, Jia Y M. Tribo-catalytic degradation of organic pollutants through bismuth oxyiodate triboelectrically harvesting mechanical energy. Nano Energy 78: 105290 (2020)
Article
Google Scholar
Zhao J H, Chen L, Luo W S, Li H M, Wu Z, Xu Z Y, Zhang Y M, Zhang H F, Yuan G L, Gao J, et al. Strong tribocatalysis of zinc oxide nanorods via triboelectrically-harvesting friction energy. Ceram Int 46: 25293–25298 (2020)
Article
Google Scholar
Yang B A, Chen H B, Guo X D, Wang L, Xu T, Bian J H, Yang Y D, Liu Q D, Du Y P, Lou X J. Enhanced tribocatalytic degradation using piezoelectric CdS nanowires for efficient water remediation. J Mater Chem C 8(42): 14845–14854 (2020)
Article
Google Scholar
Wu M, Lei H, Chen J, Dong X. Friction energy harvesting on bismuth tungstate catalyst for tribocatalytic degradation of organic pollutants. J Colloid Interface Sci 587: 883–890 (2021)
Article
Google Scholar
Ran J, Jaroniec M, Qiao S Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv Mater 30: 1704649 (2018)
Article
Google Scholar
Kreft S, Wei D, Junge H, Beller M. Recent advances on TiO2-based photocatalytic CO2 reduction. Energy Chem 2: 100044 (2020)
Article
Google Scholar
Heinicke G. Tribochemistry. Berlin (GER): Akademic-Verlag Press, 1984
Google Scholar
Al-Mamoori A, Krishnamurthy A, Rownaghi A A, Rezaei F. Carbon capture and utilization update. Energy Technol 5: 834–849 (2017)
Article
Google Scholar
Park J Y, Salmeron M. Fundamental aspects of energy dissipation in friction. Chem Rev 114: 677–711 (2014)
Article
Google Scholar
Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem Rev 114: 9919–9986 (2014)
Article
Google Scholar
Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63: 515–582 (2008)
Article
Google Scholar