, Volume 6, Issue 1, pp 116–142 | Cite as

Black phosphorus as a new lubricant

Open Access
Research Article


In recent years, a new 2D-layered material—black phosphorus (BP)—has been a rising star after the era of graphene owing to its high charge carrier mobility, tunable direct bandgap and unique in-plane anisotropic structure. With the development of the synthesis and modification methods of BP, its extensive applications, e.g., transistors, batteries and optoelectronics have emerged. In order to explore its full potential, research into the tribological properties of BP 2D-layered materials such as lubrication additives and fillers in self-lubricating composite materials would be not only of high scientific value but also of practical significance. In this work, recent advances on the friction and lubrication properties of BP nanosheets made by our group, including the micro-friction properties, the lubrication properties of BP nanosheets as water-based and oil-based lubrication additives, and the friction and wear of BP/PVDF composites will be presented. Finally, the future challenges and opportunities in the use of BP materials as lubricants will be discussed.


black phosphorus two-dimensional (2D) material lubricant additive self-lubricating composite materials friction 



The authors would like to acknowledge Xudong Chen, Ziyi Cui, Jinjin Li and Dan Guo for some of experiments present in the manuscript and their helpful discussions. The authors also would like to acknowledge the support of the National Natural Science Foundation of China (Grant Nos. 51527901, 51335005, 51475256, and 51605249).


  1. [1]
    Dasic P. International standardization and organizations in the field of tribology. Ind Lubr Tribol 55(6): 287–291 (2003)CrossRefGoogle Scholar
  2. [2]
    Jost H P. Tribology micro & macroeconomics: A road to economic savings. Tribol Lubr Technol 61(10): 18–22 (2005)Google Scholar
  3. [3]
    Iliuc I. Plenary lecture V: EU objective of 120g CO2/km emission for new cars a challenge for tribology. In Proceedings of the 9th WSEAS International Conference on Mathematics & Computers in Biology & Chemistry, Bucharest, Romania, 2008: 15.Google Scholar
  4. [4]
    Xia Y Q, Xu X C, Feng X, Chen G X. Leaf-surface wax of desert plants as a potential lubricant additive. Friction 3(3): 208–213 (2015)CrossRefGoogle Scholar
  5. [5]
    Xu J, Li J J. New achievements in superlubricity from international workshop on superlubricity: Fundamental and applications. Friction 3(4): 344–351 (2015)CrossRefGoogle Scholar
  6. [6]
    Li J J, Zhang C H, Luo J B. Superlubricity behavior with phosphoric acid-water network induced by rubbing. Langmuir 27(15): 9413–9417 (2011)CrossRefGoogle Scholar
  7. [7]
    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30): 10451–10453 (2005)CrossRefGoogle Scholar
  8. [8]
    Filleter T, Bennewitz R. Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. Phys Rev B 81(15): 155412 (2010)CrossRefGoogle Scholar
  9. [9]
    Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W M, Heimberg J A, Zandbergen H W. Superlubricity of graphite. Phys Rev Lett 92(12): 126101 (2004)CrossRefGoogle Scholar
  10. [10]
    Chu T, Ilatikhameneh H, Klimeck G, Rahman R, Chen Z H. Electrically tunable bandgaps in bilayer MoS2. Nano Lett 15(12): 8000–8007 (2015)CrossRefGoogle Scholar
  11. [11]
    Kumari S, SharamaO P, Gusain R, Mungse H P, Kukrety A, Kumar N, Sugimura H, Khatri O P. Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil-dispersible additives for friction and wear reduction. ACS Appl Mater Interfaces 7(6): 3708–3716 (2015)CrossRefGoogle Scholar
  12. [12]
    Erdemir A, Eryilmaz O. Achieving superlubricity in DLC films by controlling bulk, surface, and tribochemistry. Friction 2(2): 140–155 (2014)CrossRefGoogle Scholar
  13. [13]
    Ataca C, Şahin H, Aktürk E, Ciraci S. Mechanical and electronic properties of MoS2 nanoribbons and their defects. J Phys Chem C 115(10): 3934–3941 (2011)CrossRefGoogle Scholar
  14. [14]
    Berman D, Erdemir A, Sumant A V. Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 54: 454–459(2013)CrossRefGoogle Scholar
  15. [15]
    Liu D E, Xie G X, Guo D, Cui Z Y, Si L N, Wan C L, Zou W, Luo J B. Tunable lubricity of aliphatic ammonium graphite intercalation compounds at the micro/nanoscale. Carbon 115: 574–583 (2017)CrossRefGoogle Scholar
  16. [16]
    Guo W L, Yin J, Qiu H, Guo Y F, Wu H R, Xue M M. Friction of low-dimensional nanomaterial systems. Friction 2(3): 209–225 (2014)CrossRefGoogle Scholar
  17. [17]
    Zhang W, Zhou M, Zhu H W, Tian Y, Wang K L, Wei J Q, Ji F, Li X, Li Z, Zhang P, et al. Tribological properties of oleic acid-modified graphene as lubricant oil additives. J Phys DAppl Phys 44(20): 205303 (2011).CrossRefGoogle Scholar
  18. [18]
    Wang H D, Liu Y H, Liu W R, Wang R, Wen J G, Sheng H P, Feng J f, Erdemir A, Luo J B.Tribological Behavior of NiAl-Layered Double Hydroxide Nanoplatelets as Oil-Based Lubricant Additives. ACS Appl. Mater. Interfaces 9 (36): 30891–30899 (2017).CrossRefGoogle Scholar
  19. [19]
    Kogovšek J, Kalin M. Various MoS2-, WS2- and C-based micro-and nanoparticles in boundary lubrication. Tribol Lett 53(3): 585–597 (2014)CrossRefGoogle Scholar
  20. [20]
    Chen Z, Liu X W, Liu Y H, Gunsel S, Luo J B. Ultrathin MoS2 nanosheets with superior extreme pressure property as boundary lubricants. Sci Rep 5: 12869 (2015)CrossRefGoogle Scholar
  21. [21]
    Xie G X, Forslund M, Pan J S. Direct electrochemical synthesis of reduced graphene oxide (rGO)/copper composite films and their electrical/electroactive properties. ACS Appl Mater Interfaces 6(10): 7444–7455 (2014)CrossRefGoogle Scholar
  22. [22]
    Belmonte M, Ramírez C, González-Julián J, Schneider J, Miranzo P, Osendi M I. The beneficial effect of graphene nanofillers on the tribological performance of ceramics. Carbon 61: 431–435 (2013)CrossRefGoogle Scholar
  23. [23]
    Sorrentino A, Altavilla C, Merola M, Senatore A, Ciambelli P, Iannace S. Nanosheets of MoS2-oleylamine as hybrid filler for self-lubricating polymer composites: Thermal, tribological, and mechanical properties. Polym Compos 36(6): 1124–1134 (2015)CrossRefGoogle Scholar
  24. [24]
    Ling X, Wang H, Huang S X, Xia F N, Dresselhaus M S. The renaissance of black phosphorus. Proc Natl Acad Sci USA 112(15): 4523–4530 (2015)CrossRefGoogle Scholar
  25. [25]
    Tao J, Shen W F, Wu S, Liu L, Feng Z H, Wang C, Hu C G, Yao P, Zhang H, Pang W, et al. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 9(11): 11362–11370 (2015)CrossRefGoogle Scholar
  26. [26]
    Chen H, Huang P, Guo D, Xie G X. Anisotropic mechanical properties of black phosphorus nanoribbons. J Phys Chem C 120(51): 29491–29497 (2016)CrossRefGoogle Scholar
  27. [27]
    Liu H, Du Y C, Deng Y X, Ye P D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem Soc Rev 44(9): 2732–2743 (2015)CrossRefGoogle Scholar
  28. [28]
    Lei W Y, Liu G, Zhang J, Liu M H. Black phosphorus nanostructures: Recent advances in hybridization, doping and functionalization. Chem Soc Rev 46(12): 3492–3509 (2017)CrossRefGoogle Scholar
  29. [29]
    Lee T H, Kim S Y, Jang H W. Black phosphorus: Critical review and potential for water splitting photocatalyst. Nanomaterials 6(12): 194 (2016)CrossRefGoogle Scholar
  30. [30]
    Castellanos-Gomez A. Black phosphorus: Narrow gap, wide applications. J Phys Chem Lett 6(21): 4280–4291 (2015)CrossRefGoogle Scholar
  31. [31]
    Du Y L, Ouyang C Y, Shi S Q, Lei M S. Ab initio studies on atomic and electronic structures of black phosphorus. J Appl Phys 107(9): 093718 (2010)CrossRefGoogle Scholar
  32. [32]
    Kim H. Effect of van der Waals interaction on the structural and cohesive properties of black phosphorus. J Korean Phys Soc 64(4): 547–553 (2014)CrossRefGoogle Scholar
  33. [33]
    Wang Z H, Feng P X L. Design of black phosphorus 2D nanomechanical resonators by exploiting the intrinsic mechanical anisotropy. 2D Mater 2(2): 021001 (2015)CrossRefGoogle Scholar
  34. [34]
    Brent J R, Savjani N, Lewis E A, Haigh S J, Lewis D J, O'Brien P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem Commun 50(87): 13338–13341 (2014)CrossRefGoogle Scholar
  35. [35]
    Bridgman P W. Two new modifications of phosphorus. J Am Chem Soc 36(7): 1344–1363 (1914)CrossRefGoogle Scholar
  36. [36]
    Maruyama Y, Suzuki S, Kobayashi K, Tanuma S. Synthesis and some properties of black phosphorus single crystals. Phys BC 105(1–3): 99–102 (1981)Google Scholar
  37. [37]
    Shirotani I. Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties. Mol Cryst Liq Cryst 86(1): 203–211 (1982)CrossRefGoogle Scholar
  38. [38]
    Endo S, Akahama Y, Terada S, Narita S. Growth of large single crystals of black phosphorus under high pressure. Jpn J Appl Phys 21(8): L482–L484 (1982)CrossRefGoogle Scholar
  39. [39]
    Park C M, Sohn H J. Black phosphorus and its composite for lithium rechargeable batteries. Adv Mater 19(18): 2465–2468 (2007)CrossRefGoogle Scholar
  40. [40]
    Krebs H, Schultze-Gebhardt F. Über die Struktur und Eigenschaften der Halbmetalle. VII. Neubestimmung der Struktur des glasigen Selens nach verbesserten röntgenographischen Methoden. Acta Crystallogr 8(7): 412–419 (1955)Google Scholar
  41. [41]
    Nilges T, Kersting M, Pfeifer T. A fast low-pressure transport route to large black phosphorus single crystals. J Solid State Chem 181(8): 1707–1711 (2008)CrossRefGoogle Scholar
  42. [42]
    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4): 4033–4041 (2014)CrossRefGoogle Scholar
  43. [43]
    Lu W L, Nan H Y, Hong J H, Chen Y M, Zhu C, Liang Z, Ma X Y, Ni Z H, Jin C H, Zhang Z. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res 7(6): 853–859 (2014)CrossRefGoogle Scholar
  44. [44]
    Yasaei P, Kumar B, Foroozan T, Wang C H, Asadi M, Tuschel D, Indacochea J E, Klie R F, Salehi-Khojin A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv Mater 27(11): 1887–1892 (2015)CrossRefGoogle Scholar
  45. [45]
    Bagheri S, Mansouri N, Aghaie E. Phosphorene: A new competitor for graphene. Int J Hydrogen Energy 41(7): 4085–4095 (2016)CrossRefGoogle Scholar
  46. [46]
    Rodin A S, Carvalho A, Castro Neto A H. Strain-induced gap modification in black phosphorus. Phys Rev Lett 112(17): 176801 (2014)CrossRefGoogle Scholar
  47. [47]
    Asahina H, Morita A. Band structure and optical properties of black phosphorus. J Phys C Solid State Phys 17(11): 1839–1852 (1984)CrossRefGoogle Scholar
  48. [48]
    Liu B L, Köpf M, Abbas A N, Wang X M, Guo Q S, Jia Y C, Xia F N, Weihrich R, Bachhuber F, Pielnhofer F, Wang H, Dhall R, Cronin S B, Ge M Y, Fang X, Nilges T, Zhou C W. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv Mater 27: 4423–4429 (2015).CrossRefGoogle Scholar
  49. [49]
    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11): 699–712 (2012)CrossRefGoogle Scholar
  50. [50]
    Lv R T, Robinson J A, Schaak R E, Sun D, Sun Y F, Mallouk T E, Terrones M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of singleand few-layer nanosheets. Acc Chem Res 48(1): 56–64 (2015)CrossRefGoogle Scholar
  51. [51]
    Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nat Photonics 8(12): 899–907 (2014)CrossRefGoogle Scholar
  52. [52]
    Gusmão R, Sofer Z, Pumera M. Black phosphorus rediscovered: From bulk material to monolayers. Angew Chem Int Ed Engl 56(28): 8052–8072 (2017)CrossRefGoogle Scholar
  53. [53]
    Jiang J W, Park H S. Mechanical properties of single-layer black phosphorus. J Phys D Appl Phys 47(38): 385304 (2014)CrossRefGoogle Scholar
  54. [54]
    Qin G Z, Yan Q B, Qin Z Z, Yue S Y, Hu M, Su G. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys Chem Chem Phys 17(7): 4854–4858 (2015)CrossRefGoogle Scholar
  55. [55]
    Zhang Y Y, Pei Q X, Jiang J W, Wei N, Zhang Y W. Thermal conductivities of single- and multi-layer phosphorene: A molecular dynamics study. Nanoscale 8(1): 483–491 (2016)CrossRefGoogle Scholar
  56. [56]
    Huang Y, Qiao J S, He K, Bliznakov S, Sutter E, Chen X J, Luo D, Meng F K, Su D, Decker J, et al. Interaction of black phosphorus with oxygen and water. Chem Mater 28(22) 8330–8339 (2016)CrossRefGoogle Scholar
  57. [57]
    O'Hare P A G, Lewis B M, Shirotani I. Thermodynamic stability of orthorhombic black phosphorus. Thermochim Acta 129(1): 57–62 (1988)CrossRefGoogle Scholar
  58. [58]
    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B. Black phosphorus field-effect transistors. Nat Nanotechnol 9(5): 372–377 (2014)CrossRefGoogle Scholar
  59. [59]
    Zhu W N, Yogeesh M N, Yang S X, H. Aldave S H, Kim J S, Sonde S, Tao L, Lu N S, Akinwande D. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett 15(3): 1883–1890 (2015)CrossRefGoogle Scholar
  60. [60]
    Abbas A N, Liu B L, Chen L, Ma Y Q, Cong S, Aroonyadet N, Köpf M, Nilges T, Zhou C W. Black phosphorus gas sensors. ACS Nano 9(5): 5618–5624 (2015)CrossRefGoogle Scholar
  61. [61]
    Cho S Y, Lee Y, Koh H J, Jung H, Kim J S, Yoo H W, Kim J H, Jung H T. Superior chemical sensing performance of black phosphorus: Comparison with MoS2 and graphene. Adv Mater 28(32): 7020–7028 (2016)CrossRefGoogle Scholar
  62. [62]
    Miao J S, Cai L, Zhang S M, Nah J, Yeom J, Wang C. Air-stable humidity sensor using few-layer black phosphorus. ACS Appl Mater Interfaces 9(11): 10019–10026 (2017)CrossRefGoogle Scholar
  63. [63]
    Sun J, Lee H W, Pasta M, Yuan H T, Zheng G Y, Sun Y M, Li Y Z, Cui Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 10(11): 980–985 (2015)CrossRefGoogle Scholar
  64. [64]
    Shen Z R, Sun S T, Wang W J, Liu J W, Liu Z F, Yu J C. A black-red phosphorus heterostructure for efficient visiblelight- driven photocatalysis. J Mater Chem A 3(7): 3285–3288 (2015)CrossRefGoogle Scholar
  65. [65]
    Sa B S, Li Y L, Qi J S, Ahuja R, Sun Z M. Strain engineering for phosphorene: The potential application as a photocatalyst. J Phys Chem C 118(46): 26560–26568 (2014)CrossRefGoogle Scholar
  66. [66]
    Zhang X, Xie H M, Liu Z D, Tan C L, Luo Z M, Li H, Lin J D, Sun L Q, Chen W, Xu Z C, et al. Black phosphorus quantum dots. Angew Chem Int Ed Engl 54(12): 3653–3657 (2015)CrossRefGoogle Scholar
  67. [67]
    Moreno-Moreno M, Lopez-Polin G, Castellanos-Gomez A, Gomez-Navarro C, Gomez-Herrero J. Environmental effects in mechanical properties of few-layer black phosphorus. 2D Mater 3(3): 031007 (2016)CrossRefGoogle Scholar
  68. [68]
    Jiang J W, Park H S. Mechanical properties of single-layer black phosphorus. J Phys D Appl Phys 47(38): 385304 (2014)CrossRefGoogle Scholar
  69. [69]
    Nagao M, Hayashi A, Tatsumisago M. All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode. J Power Sources 196(16): 6902–6905 (2011)CrossRefGoogle Scholar
  70. [70]
    Sun C X, Wen L, Zeng J F, Wang Y, Sun Q, Deng L J, Zhao C J, Li Z. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 91: 81–89 (2016)CrossRefGoogle Scholar
  71. [71]
    Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, et al. Isolation and characterization of few-layer black phosphorus. 2D Mater 1(2): 025001 (2014)CrossRefGoogle Scholar
  72. [72]
    Island J O, Steele G A, van der Zant H S J, Castellanos-Gomez A. Environmental instability of few-layer black phosphorus. 2D Mater 2(1): 011002 (2015)CrossRefGoogle Scholar
  73. [73]
    Edmonds M T, Tadich A, Carvalho A, Ziletti A, O’Donnell K M, Koenig S P, Coker D F, Özyilmaz B, Castro Neto A H, Fuhrer M S. Creating a stable oxide at the surface of black phosphorus. ACS Appl Mater Interfaces 7(27): 14557–14562 (2015)CrossRefGoogle Scholar
  74. [74]
    Late D J. Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor. Microporous Mesoporous Mater 225: 494–503 (2016)CrossRefGoogle Scholar
  75. [75]
    Maslar J E, Hurst W S, Bowers Jr W J, Hendricks J H. In situ Raman spectroscopic investigation of stainless steel hydrothermal corrosion. Corrosion 58(9): 739–747 (2002)CrossRefGoogle Scholar
  76. [76]
    Oblonsky L J, Devine T M. A surface enhanced Raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium and stainless steel. Corros Sci 37(1): 17–41 (1995)CrossRefGoogle Scholar
  77. [77]
    Maslar J E, Hurst W S, Bowers W J, HendricksJ H, Aquino M I. In Situ Raman spectroscopic investigation of aqueous iron corrosion at elevated temperatures and pressures. J Electrochem Soc 147(7): 2532–2542 (2000)CrossRefGoogle Scholar
  78. [78]
    Hu Z S, Hsu S M, Wang P S. Tribochemical reaction of stearic acid on copper surface studied by surface enhanced Raman spectroscopy. Tribol Trans 35(3): 417–422 (1992)CrossRefGoogle Scholar
  79. [79]
    Ma H B, Li J, Chen H, Zuo G X, Yu Y, Ren T H, Zhao Y D. XPS and XANES characteristics of tribofilms and thermal films generated by two P- and/or S-containing additives in water-based lubricant. Tribol Int 42(6): 940–945 (2009)CrossRefGoogle Scholar
  80. [80]
    Heuer J K, Stubbins J F. An XPS characterization of FeCO3 films from CO2 corrosion. Corros Sci 41(7): 1231–1243 (1999)CrossRefGoogle Scholar
  81. [81]
    Kajdas C, Makowska M, Gradkowski M. Tribochemistry of n-hexadecane in different material systems. Lubr Sci 18(4): 255–263 (2006)CrossRefGoogle Scholar
  82. [82]
    Kajdas C, Makowska M, Gradkowski M. Influence of temperature on the tribochemical reactions of hexadecane. Lubr Sci 15(4): 329–340 (2003)CrossRefGoogle Scholar

Copyright information

© The author(s) 2017

Open Access: The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.State Key Laboratory of TribologyTsinghua UniversityBeijingChina

Personalised recommendations