, Volume 2, Issue 2, pp 114–139 | Cite as

Nanotribological studies using nanoparticle manipulation: Principles and application to structural lubricity

  • Dirk Dietzel
  • Udo D. Schwarz
  • André Schirmeisen
Open Access
Review Article


The term “structural lubricity” denotes a fundamental concept where the friction between two atomically flat surfaces is reduced due to lattice mismatch at the interface. Under favorable circumstances, its effect may cause a contact to experience ultra-low friction, which is why it is also referred to as “superlubricity”. While the basic principle is intriguingly simple, the experimental analysis of structural lubricity has been challenging. One of the main reasons for this predicament is that the tool most frequently used in nanotribology, the friction force microscope, is not well suited to analyse the friction of extended nanocontacts. To overcome this deficiency, substantial efforts have been directed in recent years towards establishing nanoparticle manipulation techniques, where the friction of nanoparticles sliding on a substrate is measured, as an alternative approach to nanotribological research. By choosing appropriate nanoparticles and substrates, interfaces exhibiting the characteristics needed for the occurrence of structural lubricity can be created. As a consequence, nanoparticle manipulation experiments such as in this review represent a unique opportunity to study the physical conditions and processes necessary to establish structural lubricity, thereby opening a path to exploit this effect in technological applications.


Nanotribology nanoparticle manipulation friction force microscopy structural lubricity superlubricity HOPG 


  1. [1]
    Craighead H G. Nanoelectromechanical systems. Science290: 1532–1535 (2000)CrossRefGoogle Scholar
  2. [2]
    Ekinci K L, Roukes M L. Nanoelectromechanical systems. Review of Scientific Instruments76: 061101 (2005)CrossRefGoogle Scholar
  3. [3]
    Handbook of Micro/Nanotribology. Bhushan B, Ed. CRC Press LLC, 1999.Google Scholar
  4. [4]
    Bhushan B, Israelachvili J N, Landman U. Nanotribology: Friction, wear and lubrication at the atomic scale. Nature374: 607–616 (1995)CrossRefGoogle Scholar
  5. [5]
    Mate M, McClelland G M, Erlandsson R, Chiang S. Atomic-scale friction of a Tungsten tip on a graphite surface. Phys Rev Lett59: 1942–1946 (1987)CrossRefGoogle Scholar
  6. [6]
    Binnig G, Quate C F, Gerber C. Atomic force microscope. Phys Rev Lett56: 930–933 (1986)CrossRefGoogle Scholar
  7. [7]
    Carpick R W, Salmeron M. Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem Rev97: 1163–1194 (1997)CrossRefGoogle Scholar
  8. [8]
    Fundamentals of Friciton and Wear on the Nanoscale. Gnecco E, Meyer E, Ed. Berlin: Springer, 2007.Google Scholar
  9. [9]
    Bowden F P, Tabor D. Friction and Lubrication of Solids. Oxford(UK): Oxford University Press, 1950.Google Scholar
  10. [10]
    Holscher H, Schirmeisen A, Schwarz U. D. Principles of atomic friction: from sticking atoms to superlubric sliding. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences366: 1383–1404 (2008)CrossRefGoogle Scholar
  11. [11]
    Carpick R W, Agraït N, Ogletree D F, Salmeron M. Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J Vac Sci Technol B14: 1289 (1996)CrossRefGoogle Scholar
  12. [12]
    Lantz M A, O’Shea S J, Welland M E, Johnson K L. Atomic-force-microscope study of contact area and friction on NbSe2. Phys Rev B55: 10776 (1997)CrossRefGoogle Scholar
  13. [13]
    Schwarz U D, Zwörner O, Köster P, Wiesendanger R. Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds. Phys Rev B56: 6987 (1997)CrossRefGoogle Scholar
  14. [14]
    Schwarz U D, Zwörner O, Köster P, Wiesendanger R. Quantitative analysis of the frictional properties of solid materials at low loads. II. Mica and germanium sulfide. Phys Rev B56: 6997 (1997).CrossRefGoogle Scholar
  15. [15]
    Meyer E, Lüthi R, Howald L, Bammerlin M, Guggisberg M, Güntherodt H-J. Site-specific friction force spectroscopy. J Vac Sci Technol B14: 1285 (1996)CrossRefGoogle Scholar
  16. [16]
    Enachescu M, van den Oetelaar R J A, Carpick R W, Ogletree D F, Flipse C F J, Salmeron M. Atomic force microscopy study of an ideally hard contact: The diamond (111)/tungsten carbide interface. Phys Rev Lett81: 1877 (1998)CrossRefGoogle Scholar
  17. [17]
    Gnecco E, Bennewitz R, Gyalog T, Loppacher Ch, Bammerlin M, Meyer E, Güntherodt H-J. Velocity dependence of atomic friction. Phys Rev Lett84: 1172–1175 (2000)CrossRefGoogle Scholar
  18. [18]
    Evstigneev M, Schirmeisen A, Jansen L, Fuchs H, Reimann P. Force dependence of transition rates in atomic friction. Phys Rev Lett97: 240601 (2006)CrossRefGoogle Scholar
  19. [19]
    Zwörner O, Hölscher H, Schwarz U D, Wiesendanger R. The velocity dependence of frictional forces in point-contact friction. Appl Phys A66: S263–267 (1998)CrossRefGoogle Scholar
  20. [20]
    Jansen L, Hölscher H, Fuchs H, Schirmeisen A. Temperature dependence of atomic-scale stick-slip friction. Phys Rev Lett104: 256101 (2010)CrossRefGoogle Scholar
  21. [21]
    Schirmeisen A, Jansen L, Hölscher H, Fuchs H. Temperature dependence of point contact friction on silicon. Appl Phys Lett88: 123108 (2006)CrossRefGoogle Scholar
  22. [22]
    Zhao X, Hamilton M, Sawyer W G, Perry S S. Thermally activated friction. Trib Lett27: 113–117 (2007)CrossRefGoogle Scholar
  23. [23]
    Barel I, Urbakh M, Jansen L, Schirmeisen A. Multibond dynamics of nanoscale friction: The role of temperature. Phys Rev Lett104: 066104 (2010)CrossRefGoogle Scholar
  24. [24]
    Overney R M, Takano H, Fujihira M, Paulus W, Ringsdorf H. Ansiotropy in friction and molecular stick-slip motion. Phys Rev Lett72: 3546 (1994)CrossRefGoogle Scholar
  25. [25]
    Bluhm H, Schwarz U D, Meyer K P, Wiesendanger R. Anisotropy of sliding friction on the triglycine sulfate (010) surface. Appl Phys A61: 525 (1995)CrossRefGoogle Scholar
  26. [26]
    Shindo H, Shitagami K, Sugai T, Kondo S-I. Evidence of the contribution of molecular orientations on the surface force friction of alkaline earth sulfate crystals. Phys Chem Chem Phys1: 1597–1600 (1995)CrossRefGoogle Scholar
  27. [27]
    Park J Y, Ogletree D F, Salmeron M, Ribeiro R A, Canfield P C, Jenks C J, Thiel P A. High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science309: 1354–1356 (2005)CrossRefGoogle Scholar
  28. [28]
    Meyer E, Overney R, Brodbeck D, Howald L, Lüthi R, Frommer J, Güntherodt H-J. Friction and wear of Langmuir-Blodgett films observed by friction force microscopy. Phys Rev Lett69: 1777 (1992)CrossRefGoogle Scholar
  29. [29]
    Overney R M, Meyer E, Frommer J, Brodbeck D, Lüthi R, Howald L, Güntherodt H-J, Fujihira M, Takano H, Gotoh Y. Friction measurements on phase-separated thin films with a modified atomic force microscope. Nature359: 133 (1992)CrossRefGoogle Scholar
  30. [30]
    Schwarz U D, Allers W, Gensterblum G, Wiesendanger R. Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact. Phys Rev B52: 14976 (1995)CrossRefGoogle Scholar
  31. [31]
    Dienwiebel M, Verhoeven G S, Pradeep N, Frenken J W M, Heimberg J A, Zandbergen H W. Superlubricity of graphite. Phys Rev Lett92: 126101 (2004)CrossRefGoogle Scholar
  32. [32]
    de Wijn A S. (In)commensurability, scaling, and multiplicity of friction in nanocrystals and application to gold nanocrystals on graphite. Phys Rev B86: 085429 (2012)CrossRefGoogle Scholar
  33. [33]
    Dietzel D, Feldmann M, Fuchs H, Schwarz U D, Schirmeisen A. Scaling laws of structural lubricity. Phys Rev Lett111: 235502 (2013)CrossRefGoogle Scholar
  34. [34]
    Israelachvili J N, Tabor D. Shear properties of molecular films. Wear24: 386–390 (1973)CrossRefGoogle Scholar
  35. [35]
    Briscoe B J, Evans D C B. The shear properties of Langmuir-Blodgett layers. Proc Roy Soc Lond A380: 389–407 (1982)CrossRefGoogle Scholar
  36. [36]
    Krim J, Widom A. Damping of a crystal oscillator by an adsorbed monolayer and its relation to interfacial viscosity. Phys Rev B38: 12184 (1988)CrossRefGoogle Scholar
  37. [37]
    Krim J, Solina D H, Chiarello R. Nanotribology of a Kr monolayer: A quartz-crystal microbalance study of atomic-scale friction. Phys Rev Lett66: 181–184 (1991)CrossRefGoogle Scholar
  38. [38]
    Coffey T, Krim J. Impact of substrate corrugation on the sliding friction levels of adsorbed films. Phys Rev Lett95: 076101 (2005)CrossRefGoogle Scholar
  39. [39]
    Lüthi R, Meyer E, Haefke H, Howald L, Gutmannsbauer W, Güntherodt H-J. Sled-type motion on the nanometer scale: Determination of dissipation and cohesive energies of C60. Science266: 1979–1981 (1994)CrossRefGoogle Scholar
  40. [40]
    Sheehan P E, Lieber C M. Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science271: 1158–1161 (1996)CrossRefGoogle Scholar
  41. [41]
    Falvo M R, Steele J, Taylor II R M, Superfine R. Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG. Phys Rev B62: R10665 (2000)CrossRefGoogle Scholar
  42. [42]
    Rao A, Gnecco E, Marchetto D, Mougin K, Schönenberger M, Valeri S, Meyer E. The analytical relations between particles and probe trajectories in atomic force microscope nanomanipulation. Nanotechnology20: 115706 (2009)CrossRefGoogle Scholar
  43. [43]
    Polyakov B, Vlassov S, Dorogin L M, Butikova J, Antsov M, Oras S, Lohmus R, Kink I. Manipulation of nanoparticles of different shapes inside a scanning electron microscope. Beilstein Journal of Nanotechnology5: 133–140 (2014)CrossRefGoogle Scholar
  44. [44]
    Mougin K, Gnecco E, Rao A, Cuberes M T, Jayaraman S, McFarland E W, Haidara H, Meyer E. Manipulation of gold nanoparticles: Influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere). Langmuir24: 1577–1581 (2008)CrossRefGoogle Scholar
  45. [45]
    Dietzel D, Ritter C, Mönninghoff T, Fuchs H, Schirmeisen A, Schwarz U D. Frictional duality observed during nanoparticle sliding. Phys Rev Lett101: 125505 (2008)CrossRefGoogle Scholar
  46. [46]
    Dietzel D, Mönninghoff T, Herding C, Feldmann M, Fuchs H, Stegemann B, Ritter C, Schwarz U D, Schirmeisen A. Frictional duality of metallic nanoparticles: Influence of particle morphology, orientation, and air exposure. Phys Rev B82: 035401 (2010)CrossRefGoogle Scholar
  47. [47]
    Brndiar J, Turansky R, Dietzel D, Schirmeisen A, Stich I. Understanding frictional duality and bi-duality: Sbnanoparticles on HOPG. Nanotechnology22: 085704 (2011)CrossRefGoogle Scholar
  48. [48]
    Ritter C, Heyde M, Stegemann B, Rademann K, Schwarz U D. Contact-area dependence of frictional forces: Moving adsorbed antimony nanoparticles. Phys Rev B71: 085405 (2005)CrossRefGoogle Scholar
  49. [49]
    Paolicelli G, Rovatti M, Vanossi A, Valeri S. Controlling single cluster dynamics at the nanoscale. Appl Phys Lett95: 143121 (2009)CrossRefGoogle Scholar
  50. [50]
    Polyakov B, Dorogin L M, Vlassov S, Kink I, Romanov A E, Lohmus R. Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope. Micron43: 1140–1146 (2012)CrossRefGoogle Scholar
  51. [51]
    Dietzel D, Feldmann M, Fuchs H, Schwarz U D, Schirmeisen A. Transition from static to kinetic friction of metallic nanoparticles. Appl Phys Lett95: 053104 (2009)CrossRefGoogle Scholar
  52. [52]
    Feldmann M, Dietzel D, Schwarz U D, Fuchs H, Schirmeisen A. Influence of contact aging on nanoparticle friction kinetics. Phys Rev Lett112: 155503 (2014)CrossRefGoogle Scholar
  53. [53]
    Stegemann B, Ritter C, Kaiser B, Rademann K. Crystallization of antimony nanoparticles: Pattern formation and fractal growth. J Phys Chem B108: 14292–14297 (2004)CrossRefGoogle Scholar
  54. [54]
    Kaiser B, Stegemann B, Kaukel H, Rademann K. Instabilities and pattern formation during the self-organized growth of nanoparticles on graphite. Surf Sci496: L18–L22 (2002)CrossRefGoogle Scholar
  55. [55]
    Ritter C, Baykara M Z, Stegemann B, Heyde M, Rademann K, Schroers J, Schwarz U D. Nonuniform friction-area dependency for antimony oxide surfaces sliding on graphite. Phys Rev B88: 045422 (2013)CrossRefGoogle Scholar
  56. [56]
    Tranvouez E, Orieux A, Boer-Duchemin, C. H. Devillers E, Huc V, Comtet G, Dujardin G. Manipulation of cadmium selenide nanorods with an atomic force microscope. Nanotechnology20: 165304 (2009)CrossRefGoogle Scholar
  57. [57]
    Bombis Ch, Ample F, Mielke J, Mannsberger M, Villagmez C J, Roth Ch, Joachim C, Grill L. Mechanical behavior of nanocrystalline NaCl islands on Cu(111). Phys Rev Lett104: 185502 (2010)CrossRefGoogle Scholar
  58. [58]
    Feng X, Kwon S, Park J Y, Salmeron M. Superlubric sliding of graphene nanoflakes on graphene. ACS Nano7: 1718–1724 (2013)CrossRefGoogle Scholar
  59. [59]
    Zhong Q, Inniss D, Kjoller K, Elings V. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett290: L688 (1993)Google Scholar
  60. [60]
    Albrecht T R, Grütter P, Horne D, Rugar D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys69: 668 (1991)CrossRefGoogle Scholar
  61. [61]
    Ritter C, Heyde M, Schwarz U D, Rademann K. Controlled translational manipulation of small latex spheres by dynamic force microscopy. Langmuir18: 7798–7803 (2002)CrossRefGoogle Scholar
  62. [62]
    Anczykowski B, Gotsmann B, Fuchs H, Cleveland J P, Elings V B. How to measure energy dissipation in dynamic mode atomic force microscopy. Appl Surf Sci140: 376–382 (1999)CrossRefGoogle Scholar
  63. [63]
    Aruliah D A, Müser M, Schwarz U D. Calculations of the threshold force and threshold power to move adsorbed nanoparticles. Phys Rev B71: 085406 (2005)CrossRefGoogle Scholar
  64. [64]
    Schwarz U D, Ritter C, Heyde M. Nanotribological studies by nanoparticle manipulation. In Fundamentals of Friction and Wear on the Nanoscale. Meyer E, Gnecco E, Ed. Heidelberg: Springer, 2007: 561–582.CrossRefGoogle Scholar
  65. [65]
    Darwich S, Mougin K, Rao A, Gnecco E, Jayaraman S, Haidara H. Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: Influence of particle substrate chemistry and morphology, and of operating conditions. Beilstein Journal of Nanotechnology2: 85–98 (2011)CrossRefGoogle Scholar
  66. [66]
    Tripathi M, Paolicelli G, D’Addato S, Valerie S. Controlled AFM detachments and movement of nanoparticles: Gold clusters on HOPG at different temperatures. Nanotechnology23: 245706 (2012)CrossRefGoogle Scholar
  67. [67]
    Ternes M, Lutz C P, Hirjibehedin C F, Giessibl F J, Heinrich A J. The force needed to move an atom on a surface. Science319: 1066 (2008)CrossRefGoogle Scholar
  68. [68]
    Langewisch G, Falter J, Fuchs H, Schirmeisen A. Forces during the controlled displacement of organic molecules. Phys Rev Lett110: 036101 (2013)CrossRefGoogle Scholar
  69. [69]
    Palacio M, Bhushan B. A nanoscale friction investigation during the manipulation of nanoparticles in controlled environments. Nanotechnology19: 315710 (2008)CrossRefGoogle Scholar
  70. [70]
    Dietzel D, Mönninghoff T, Jansen L, Fuchs H, Ritter C, Schwarz U D, Schirmeisen A. Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques. J Appl Phys102: 084306 (2007)CrossRefGoogle Scholar
  71. [71]
    Ueyama H, Sugawara Y, Morita S. Stable operation mode for dynamic noncontact atomic force microscopy. Appl Phys A Mater Sci Process66: 295 (1998)CrossRefGoogle Scholar
  72. [72]
    Schirmeisen A, Hölscher H, Anczykowski B, Weiner D, Schäfer M M, Fuchs H. Dynamic force spectroscopy using the constant-excitation and constant-amplitude modes. Nanotechnology16: S13 (2005)CrossRefGoogle Scholar
  73. [73]
    Dietzel D, Feldmann M, Herding C, Schwarz U D, Schirmeisen A. Quantifying pathways and friction of nanoparticles during controlled manipulation by contact-mode atomic force microscopy. Trib Lett39: 273–281 (2010)CrossRefGoogle Scholar
  74. [74]
    Rao A, Wille M L, Gnecco E, Mougin K, Meyer E. Trajectory fluctuations accompanying the manipulation of spherical nanoparticles. Phys Rev B80: 193405 (2009)CrossRefGoogle Scholar
  75. [75]
    Nita P, Casado S, Dietzel D, Schirmeisen A, Gnecco E. Spinning and translational motion of Sb nanoislands manipulated on MoS2. Nanotechnology24: 325302 (2013)CrossRefGoogle Scholar
  76. [76]
    Liu Y, Szlufarska I. Chemical origins of frictional aging. Phys Rev Lett109: 186102 (2012)CrossRefGoogle Scholar
  77. [77]
    Li Q, Tullis T E, Goldsby D E, Carpick R W. Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature480: 233 (2011)CrossRefGoogle Scholar
  78. [78]
    Evstvigeneev M, Reimann P. Thermally activated contact strengthening explains nonmonotonic temperature and velocity dependence of atomic friction. Phys Rev X3: 041020 (2013)Google Scholar
  79. [79]
    Persson B N J. Theory and simulation of sliding friction. Phys Rev Lett71: 1212 (1993)CrossRefGoogle Scholar
  80. [80]
    Greenwood J A, Williamson J B P. Contact of nominally flat surfaces. Proc R Soc Lond A295: 300 (1966)CrossRefGoogle Scholar
  81. [81]
    Müser M. Theoretical aspects of superlubricity. In Fundamentals of Friction and Wear on the Nanoscale. Meyer E, Gnecco E, Ed. Heidelberg: Springer, 2007: 177–210.CrossRefGoogle Scholar
  82. [82]
    Müser M H, Wenning L, Robbins M O. Simple microscopic theory of Amontons’s laws for static friction. Phys Rev Lett86: 1295–1298 (2001)CrossRefGoogle Scholar
  83. [83]
    Hirano M, Shinjo K. Atomistic locking and friction. Phys Rev B41: 11837 (1990)CrossRefGoogle Scholar
  84. [84]
    Shinjo K, Hirano M. Dynamics of friction: Superlubric state. Surf Sci283: 473–478 (1993)CrossRefGoogle Scholar
  85. [85]
    Müser M H. Structural lubricity: Role of dimension and symmetry. Europhys Lett66: 97–103 (2004)CrossRefGoogle Scholar
  86. [86]
    Martin J M, Donnet C, Mogne T L, Epicier T. Superlubricity of molybdenum disulphide. Phys Rev B48: 10583 (1993)CrossRefGoogle Scholar
  87. [87]
    Hirano M, Shinjo K, Kaneko R, Murata Y. Observation of superlubricity by scanning tunneling microscopy. Phys Rev Lett78: 1448 (1997)CrossRefGoogle Scholar
  88. [88]
    Crossley A, Kisi E H, Summers J W B, Myhra S. Ultra-low friction for a layered carbide-derived ceramic, Ti3SiC2, investigated by lateral force microscopy (LFM). J Phys D32: 632 (1999)CrossRefGoogle Scholar
  89. [89]
    Liu Z, Yang J, Grey F, Liu J Z, Liu Y, Wang Y, Yang Y, Cheng Y, Zheng Q. Observation of microscale superlubricity in graphite. Phys Rev Lett108: 205503 (2012)CrossRefGoogle Scholar
  90. [90]
    Reguzzonia M, Ferrarioa M, Zapperia S, Righia M C. Onset of frictional slip by domain nucleation in adsorbed monolayers. PNAS107: 1313 (2010)Google Scholar
  91. [91]
    Hirano M, Shinjo K. Superlubricity and frictional anisotropy. Wear168: 121–125 (1993)CrossRefGoogle Scholar
  92. [92]
    Sørensen M R, Jacobsen K W, Stoltze P. Simulations of atomic-scale sliding friction. Phys Rev B53: 2101–2113 (1996)CrossRefGoogle Scholar
  93. [93]
    Müser M H, Robbins M O. Conditions for static friction between flat crystalline surfaces. Phys Rev B61: 2335–2342 (2000)CrossRefGoogle Scholar
  94. [94]
    Mo Y, Turner K T, Szlufarska I. Friction laws at the nanoscale. Nature457: 1116–1119 (2009)CrossRefGoogle Scholar
  95. [95]
    He G, Müser M H, Robbins M O. Adsorbed layers and the origin of static friction. Science284: 1650–1652 (1999)CrossRefGoogle Scholar
  96. [96]
    Dietzel D, Feldmann M, Fuchs H, Schwarz U D, Schirmeisen A. Scaling laws of structural lubricity-Supplemental material. Phys Rev Lett111: 235502 (2013)CrossRefGoogle Scholar
  97. [97]
    Hölscher H, Allers W, Schwarz U D, Schwarz A, Wiesendanger R. Interpretation of true atomic resolution images of graphite (0001) in noncontact atomic force microscopy. Phys Rev B62: 6967–6970 (2000)CrossRefGoogle Scholar
  98. [98]
    Jensen P, Blase X, Ordéjon P. First principles study of gold adsorption and diffusion on graphite. Surf Sci564: 173–178 (2004)CrossRefGoogle Scholar

Copyright information

© The author(s) 2014

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited

Authors and Affiliations

  • Dirk Dietzel
    • 1
  • Udo D. Schwarz
    • 2
  • André Schirmeisen
    • 1
  1. 1.Institute of Applied Physics (IAP)Justus-Liebig-Universität GiessenGiessenGermany
  2. 2.Departments of Mechanical Engineering & Materials Science and Chemical & Environmental Engineering and Center for Research on Structures and Phenomena (CRISP)Yale UniversityNew HavenUSA

Personalised recommendations