Skip to main content

Advertisement

Log in

Effect of Hormones as Cofactors in Food Allergy

  • Review
  • Published:
Current Treatment Options in Allergy Aims and scope Submit manuscript

Abstract

Purpose of review

Hormones such as estrogen, progesterone, and testosterone can contribute to differences in allergy prevalence and severity between men and women by affecting the immune system. This review aims to analyze what is currently known about the role of hormones as cofactors in food allergy.

Recent findings

Studies on rodents indicate immunological differences between males and females, with females generally exhibiting a more robust immune response. Estrogens are associated with enhanced humoral immunity and antibody synthesis, while androgens and progesterone suppress immunity and inflammation. Studies suggest that estrogens can exacerbate a pre-existing bias towards Th2 immune responses associated with atopy.

Summary

The complex relationship between the immune response and hormones significantly influences allergic disease outcomes, contributing to gender differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No data sets were generated or analysed in the current review.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Johansson SG, Hourihane JO, Bousquet J, Bruijnzeel-Koomen C, Dreborg S, Haahtela T, et al. A revised nomenclature for allergy: an EAACI position statement from the EAACI nomenclature task force. Allergy. 2001;56:813–24.

    Article  PubMed  CAS  Google Scholar 

  2. Rona RJ, Keil T, Summers C, Gislason D, Zuidmeer L, Sodergren E, et al. The prevalence of food allergy: a meta-analysis. J Allergy Clin Immunol. 2007;120:638–46.

    Article  PubMed  Google Scholar 

  3. Gupta RS, Warren CM, Smith BM, Jiang J, Blumenstock JA, Davis MM, et al. Prevalence and severity of food allergies among US adults. JAMA Netw Open. 2019;2:e185630.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Savage J, Johns CB. Food allergy: epidemiology and natural history. Immunol Allergy Clin North Am. 2015;35:45–59.

    Article  PubMed  Google Scholar 

  5. Becklake MR, Kauffmann F. Gender differences in airway behaviour over the human life span. Thorax. 1999;54:1119–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Almqvist C, Worm M, Leynaert B. Impact of gender on asthma in childhood and adolescence: a GA2LEN review. Allergy. 2008;63:47–57.

    Article  PubMed  CAS  Google Scholar 

  7. Afify SM, Pali-Schöll I. Adverse reactions to food: the female dominance – A secondary publication and update. World Allergy Organ J. 2017;10:43.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kelly C, Gangur V. Sex disparity in food allergy: evidence from the PubMed database. J Allergy (Cairo). 2009;2009:159845.

    PubMed  Google Scholar 

  9. Jaillon S, Berthenet K, Garlanda C. Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol. 2019;56:308–21.

    Article  PubMed  CAS  Google Scholar 

  10. Dodd KC, Menon M. Sex bias in lymphocytes: implications for autoimmune diseases. Front Immunol. 2022;13:945762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Miquel CH, Faz-Lopez B, Guéry JC. Influence of X chromosome in sex-biased autoimmune diseases. J Autoimmun. 2023;137:102992.

    Article  PubMed  CAS  Google Scholar 

  12. Xing E, Billi AC, Gudjonsson JE. Sex bias and autoimmune diseases. J Invest Dermatol. 2022;142:857–66.

    Article  PubMed  CAS  Google Scholar 

  13. • Pinto JA, Araujo JM, Gómez HL. Sex, immunity, and cancer. Biochim Biophys Acta Rev Cancer. 2022;1877:188647. This review acknowledges sex has been a widely forgotten biomarker in cancer therapy, but it has recently acquired great relevance due to the different results seen in immunotherapy treatment.

    Article  PubMed  CAS  Google Scholar 

  14. • Duijster JW, Lieber T, Pacelli S, Van Balveren L, Ruijs LS, Raethke M, et al. Sex-disaggregated outcomes of adverse events after COVID-19 vaccination: a Dutch cohort study and review of the literature. Front Immunol. 2023;14:1078736. This review contains literature assessing the incidences of adverse events after immunization to COVID-19 and the effect of sex in response to vaccination.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lau A, West L, Tullius SG. The impact of sex on alloimmunity. Trends Immunol. 2018;39:407–18.

    Article  PubMed  CAS  Google Scholar 

  16. Shapiro JR, Roberts CW, Arcovio K, Reade L, Klein SL, Dhakal S. Effects of biological sex and pregnancy on SARS-CoV-2 pathogenesis and vaccine outcomes. Curr Top Microbiol. 2023;441:75–110.

    Google Scholar 

  17. Chandler MH, Schuldheisz S, Phillips BA, Muse KN. Premenstrual asthma: the effect of estrogen on symptoms, pulmonary function, and beta 2-receptors. Pharmacotherapy. 1997;17:224–34.

    Article  PubMed  CAS  Google Scholar 

  18. Pauli BD, Reid RL, Munt PW, Wigle RD, Forkert L. Influence of the menstrual cycle on airway function in asthmatic and normal subjects. Am Rev Respir Dis. 1989;140:358–62.

    Article  PubMed  CAS  Google Scholar 

  19. Chong E, Ensom MH. Peak expiratory flow rate and premenstrual symptoms in healthy nonasthmatic women. Pharmacotherapy. 2000;20:1409–16.

    Article  PubMed  CAS  Google Scholar 

  20. Martinez-Moragón E, Plaza V, Serrano J, Picado C, Galdiz JB, López-Viña A, et al. Near-fatal asthma related to menstruation. J Allergy Clin Immunol. 2004;113:242–4.

    Article  PubMed  Google Scholar 

  21. Kiriyama K, Sugiura H, Uehara M. Premenstrual deterioration of skin symptoms in female patients with atopic dermatitis. Dermatology. 2003;206:110–2.

    Article  PubMed  Google Scholar 

  22. Bauer CS, Kampitak T, Messieh ML, Kelly KJ, Vadas P. Heterogeneity in presentation and treatment of catamenial anaphylaxis. Ann Allergy Asthma Immunol. 2013;111:107–11.

    Article  PubMed  CAS  Google Scholar 

  23. Foer D, Buchheit KM. Presentation and natural history of progestogen hypersensitivity. Ann Allergy Asthma Immunol. 2019;122:156–9.

    Article  PubMed  CAS  Google Scholar 

  24. Wölbing F, Fischer J, Köberle M, Kaesler S, Biedermann T. About the role and underlying mechanisms of cofactors in anaphylaxis. Allergy. 2013;68:1085–92.

    Article  PubMed  Google Scholar 

  25. Niggemann B, Beyer K. Factors augmenting allergic reactions. Allergy. 2014;69:1582–7.

    Article  PubMed  CAS  Google Scholar 

  26. •• Bartra J, Turner PJ, Muñoz-Cano RM. Cofactors in food anaphylaxis in adults. Ann Allergy Asthma Immunol. 2023;130:733–40. This review provides recent developments regarding cofactors in food-induced anaphylaxis in adults.

    Article  PubMed  CAS  Google Scholar 

  27. Simpson G, Roomes D, Humphrey MD. Anaphylactoid reactions associated with menstruation affecting two sisters. Med J Aust. 2001;175:415–7.

    Article  PubMed  CAS  Google Scholar 

  28. Patrawala M, Lee G. Catamenial anaphylaxis presenting prior to onset of menses. Ann Allergy Asthma Immunol. 2018;121:S79-80.

    Article  Google Scholar 

  29. Bito T, Kanda E, Tanaka M, Fukunaga A, Horikawa T, Nishigori C. Cows milk-dependent exercise-induced anaphylaxis under the condition of a premenstrual or ovulatory phase following skin sensitization. Allergol Int. 2008;57:437–9.

    Article  PubMed  Google Scholar 

  30. Burstein M, Rubinow A, Shalit M. Cyclic anaphylaxis associated with menstruation. Ann Allergy. 1991;1:36–8.

    Google Scholar 

  31. Fischer J, Schuck E, Biedermann T. Wheat-dependent exercise-induced anaphylaxis exclusively during menstruation. Allergy. 2010;65:1347–8.

    Article  PubMed  CAS  Google Scholar 

  32. Basomba A, Guerrero M, Campos A, Peláz A, Villalmanzo IG. Grave anaphylactic-like reaction in the course of menstruation. A case report. Allergy. 1987;42:477–9.

    Article  PubMed  CAS  Google Scholar 

  33. Brander E, McQuillan S. Cyclic anaphylactic reaction related to menstruation: differentiating between progesterone hypersensitivity and catamenial anaphylaxis: a case report. J Pediatr Adolesc Gynecol. 2018;31:191.

    Article  Google Scholar 

  34. • Rajput S, Vininski MS, Lehmann LA, Hobbs NJ, Dolence JJ. Androgen receptor signaling protects male mice from the development of immune response to peanut. Am J Clin Exp Immunol. 2023;12:60–71. This study documents for the first time a sex difference in a mouse model of peanut allergy.

    PubMed  PubMed Central  Google Scholar 

  35. •• Wang J, Guo X, Chen C, Sun S, Liu G, Liu M, et al. Gender differences in food allergy depend on the PPAR γ/NF-κB in the intestines of mice. Life Sci. 2021;278:119606. This study demonstrated that systemic anaphylaxis in the food allergic mice was gender-dependent, and a possible explanation of gender differences might be that the combination of estrogen and the receptor ERβ activates PPARγ.

    Article  PubMed  CAS  Google Scholar 

  36. Hox V, Desai A, Bandara G, Gilfillan AM, Metcalfe DD, Olivera A. Estrogen increases the severity of anaphylaxis in female mice through enhanced endothelial nitric oxide synthase expression and nitric oxide production. J Allergy Clin Immunol. 2015;135:729-736.e5.

    Article  PubMed  CAS  Google Scholar 

  37. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16:626–38.

    Article  PubMed  CAS  Google Scholar 

  38. Fink AL, Klein SL. The evolution of greater humoral immunity in females than males: implications for vaccine efficacy. Curr Opin Physiol. 2018;6:16–20.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jarvis D, Burney P. ABC of allergies. The epidemiology of allergic disease. BMJ. 1998;316:607–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Govaere E, Van Gysel D, Massa G, Verhamme KM, Doli E, De Baets F. The influence of age and gender on sensitization to aero-allergens. Pediatr Allergy Immunol. 2007;18:671–8.

    Article  PubMed  Google Scholar 

  41. Shrestha P, Dhital R, Poudel D, Donato A, Karmacharya P, Craig T. Trends in hospitalizations related to anaphylaxis, angioedema, and urticaria in the United States. Ann Allergy Asthma Immunol. 2019;122:401-406.e2.

    Article  PubMed  Google Scholar 

  42. Ojeda P, Sastre J, Olaguibel JM, Chivato T, Investigators participating in the National Survey of the Spanish Society of Allergology and Clinical Immunology Alergológica 2015. Alergológica 2015: a national survey on allergic diseases in the adult Spanish population. J Investig Allergol Clin Immunol. 2018;28:151–64.

    Article  PubMed  CAS  Google Scholar 

  43. Verrill L, Bruns R, Luccioli S. Prevalence of self-reported food allergy in U.S. adults: 2001, 2006, and 2010. Allergy Asthma Proc. 2015;36:458–67.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Belmabrouk S, Abdelhedi R, Bougacha F, Bouzid F, Gargouri H, Ayadi I, et al. Prevalence of self-reported food allergy in Tunisia: general trends and probabilistic modeling. World Allergy Organ J. 2023;16:100813.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Acker WW, Plasek JM, Blumenthal KG, Lai KH, Topaz M, Seger DL, et al. Prevalence of food allergies and intolerances documented in electronic health records. J Allergy Clin Immunol. 2017;140:1587-1591.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Warren C, Lei D, Sicherer S, Schleimer R, Gupta R. Prevalence and characteristics of peanut allergy in US adults. J Allergy Clin Immunol. 2021;147:2263-2270.e5.

    Article  PubMed  CAS  Google Scholar 

  47. Hernández-Colín DD, Fregoso-Zúñiga E, Morales-Romero J, Bedolla-Pulido TI, Barajas-Serrano AC, Bedolla-Pulido A, et al. Peanut allergy among Mexican adults with allergic respiratory diseases: prevalence and clinical manifestations. Rev Alerg Mex. 2019;66:314–21.

    Article  PubMed  Google Scholar 

  48. Bogas G, Muñoz-Cano R, Mayorga C, Casas R, Bartra J, Pérez N, et al. Phenotyping peach-allergic patients sensitized to lipid transfer protein and analysing severity biomarkers. Allergy. 2020;75:3228–36.

    Article  PubMed  CAS  Google Scholar 

  49. Just J, Elegbede CF, Deschildre A, Bousquet J, Moneret-Vautrin DA, Crepet A, et al. Three peanut-allergic/sensitized phenotypes with gender difference. Clin Exp Allergy. 2016;46:1596–604.

    Article  PubMed  CAS  Google Scholar 

  50. Schäfer T, Böhler E, Ruhdorfer S, Weigl L, Wessner D, Heinrich J, et al. Epidemiology of food allergy/food intolerance in adults: associations with other manifestations of atopy. Allergy. 2001;56:1172–9.

    Article  PubMed  Google Scholar 

  51. Ruano-Zaragoza M, Casas-Saucedo R, De la Cruz Martinez CA, Araujo-Sanchez G, Gelis S, González MF, et al. Advances in the understanding of the cofactor effect in lipid transfer protein food allergy: from phenotype description to clinical management. Allergy. 2022;77:1924–6.

    Article  PubMed  Google Scholar 

  52. Warren CM, Aktas ON, Manalo LJ, Bartell TR, Gupta RS. The epidemiology of multifood allergy in the United States: a population-based study. Ann Allergy Asthma Immunol. 2023;130:637-648.e5.

    Article  PubMed  Google Scholar 

  53. Muramatsu K, Imamura H, Tokutsu K, Fujimoto K, Fushimi K, Matsuda S. Epidemiological study of hospital admissions for food-induced anaphylaxis using the Japanese diagnosis procedure combination database. J Epidemiol. 2022;32:163–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tamazouzt S, Adel-Patient K, Deschildre A, Roduit C, Charles MA, de Lauzon-Guillain B, et al. Prevalence of food allergy in France up to 5.5 years of age: results from the ELFE cohort. Nutrients. 2022;14:3624.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhao XJ, McKerr G, Dong Z, Higgins CA, Carson J, Yang ZQ, et al. Expression of oestrogen and progesterone receptors by mast cells alone, but not lymphocytes, macrophages or other immune cells in human upper airways. Thorax. 2001;56:205–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Schneider AE, Kárpáti E, Schuszter K, Tóth EA, Kiss E, Kulcsár M, et al. A dynamic network of estrogen receptors in murine lymphocytes: fine-tuning the immune response. J Leukoc Biol. 2014;96:857–72.

    Article  PubMed  Google Scholar 

  57. Eidinger D, Garrett TJ. Studies of the regulatory effects of the sex hormones on antibody formation and stem cell differentiation. J Exp Med. 1972;136:1098–116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Weinstein Y, Ran S, Segal S. Sex-associated differences in the regulation of immune responses controlled by the MHC of the mouse. J Immunol. 1984;132:656–61.

    Article  PubMed  CAS  Google Scholar 

  59. Homo-Delarche F, Fitzpatrick F, Christeff N, Nunez EA, Bach JF, Dardenne M. Sex steroids, glucocorticoids, stress and autoimmunity. J Steroid Biochem Mol Biol. 1991;40:619–37.

    Article  PubMed  CAS  Google Scholar 

  60. •• Wizemann TM, Pardue M-L, editors. Exploring the biological contributions to human health: does sex matter? [Internet]. Washington (DC): National Academies Press (US); 2001 [cited 2023 Dec 2]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK222288/. Accessed 1 Oct 2023. This book discusses basic biochemical differences in the cells of males and females and health variability between the sexes from conception throughout life.

  61. Cutolo M, Sulli A, Capellino S, Villaggio B, Montagna P, Seriolo B, et al. Sex hormones influence on the immune system: basic and clinical aspects in autoimmunity. Lupus. 2004;13:635–8.

    Article  PubMed  CAS  Google Scholar 

  62. Lauzon-Joset JF, Mincham KT, Abad AP, Short BP, Holt PG, Strickland DH, et al. Oestrogen amplifies pre-existing atopy-associated Th2 bias in an experimental asthma model. Clin Exp Allergy. 2020;50:391–400.

    Article  PubMed  CAS  Google Scholar 

  63. Melgert BN, Postma DS, Kuipers I, Geerlings M, Luinge MA, van der Strate BWA, et al. Female mice are more susceptible to the development of allergic airway inflammation than male mice. Clin Exp Allergy. 2005;35:1496–503.

    Article  PubMed  CAS  Google Scholar 

  64. Mackey E, Ayyadurai S, Pohl CS, D’ Costa S, Li Y, Moeser AJ. Sexual dimorphism in the mast cell transcriptome and the pathophysiological responses to immunological and psychological stress. Biol Sex Differ. 2016;7:60.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li JN, Li XL, He J, Wang JX, Zhao M, Liang XB, et al. Sex- and afferent-specific differences in histamine receptor expression in vagal afferents of rats: a potential mechanism for sexual dimorphism in prevalence and severity of asthma. Neuroscience. 2015;303:166–77.

    Article  PubMed  CAS  Google Scholar 

  66. McClain JL, Morales-Soto W, Gonzales J, Parmar V, Demireva EY, Gulbransen BD. Sexually dimorphic effects of histamine degradation by enteric glial histamine N-methyltransferase (HNMT) on visceral hypersensitivity. Biomolecules. 2023;13:1651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Yung JA, Fuseini H, Newcomb DC. Hormones, sex, and asthma. Ann Allergy Asthma Immunol. 2018;120:488–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Agarwal AK, Shah A. Menstrual-linked asthma. J Asthma. 1997;34:539–45.

    Article  PubMed  CAS  Google Scholar 

  69. Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 2015;294:63–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Cunningham M, Gilkeson G. Estrogen receptors in immunity and autoimmunity. Clin Rev Allergy Immunol. 2011;40:66–73.

    Article  PubMed  CAS  Google Scholar 

  71. Mohammad I, Starskaia I, Nagy T, Guo J, Yatkin E, Väänänen K, et al. Estrogen receptor α contributes to T cell–mediated autoimmune inflammation by promoting T cell activation and proliferation. Sci Signal. 2018;11:eaap9415.

    Article  PubMed  Google Scholar 

  72. •• Vininski MS, Rajput S, Hobbs NJ, Dolence JJ, Vininski MS, Rajput S, et al. Understanding sex differences in the allergic immune response to food. AIMS Allergy and Immunology. 2022;6:90–105. This review uses peanuts as an example food allergen when discussing the immunological mechanisms driving allergic responses, sensitization routes, and the role sex hormones play in the development of allergic disease.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Narita S, Goldblum RM, Watson CS, Brooks EG, Estes DM, Curran EM, et al. Environmental estrogens induce mast cell degranulation and enhance IgE-mediated release of allergic mediators. Environ Health Perspect. 2007;115:48–52.

    Article  PubMed  CAS  Google Scholar 

  74. Fogel WA. Diamine oxidase (DAO) and female sex hormones. Agents Actions. 1986;18:44–5.

    Article  PubMed  CAS  Google Scholar 

  75. Holt PG, Britten D, Sedgwick JD. Suppression of IgE responses by antigen inhalation: studies on the role of genetic and environmental factors. Immunology. 1987;60:97–102.

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Teilmann SC, Clement CA, Thorup J, Byskov AG, Christensen ST. Expression and localization of the progesterone receptor in mouse and human reproductive organs. J Endocrinol. 2006;191:525–35.

    Article  PubMed  CAS  Google Scholar 

  77. Su L, Sun Y, Ma F, Lü P, Huang H, Zhou J. Progesterone inhibits Toll-like receptor 4-mediated innate immune response in macrophages by suppressing NF-κB activation and enhancing SOCS1 expression. Immunol Lett. 2009;125:151–5.

    Article  PubMed  CAS  Google Scholar 

  78. Hardy DB, Janowski BA, Corey DR, Mendelson CR. Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression. Mol Endocrinol. 2006;20:2724–33.

    Article  PubMed  CAS  Google Scholar 

  79. Butts CL, Bowers E, Horn JC, Shukair SA, Belyavskaya E, Tonelli L, et al. Inhibitory effects of progesterone differ in dendritic cells from female and male rodents. Gend Med. 2008;5:434–47.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Oertelt-Prigione S. Immunology and the menstrual cycle. Autoimmun Rev. 2012;11:A486-492.

    Article  PubMed  CAS  Google Scholar 

  81. Lorenz TK, Heiman JR, Demas GE. Sexual activity modulates shifts in TH1/TH2 cytokine profile across the menstrual cycle: an observational study. Fertil Steril. 2015;104:1513-1521.e1-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Vasiadi M, Kempuraj D, Boucher W, Kalogeromitros D, Theoharides TC. Progesterone inhibits mast cell secretion. Int J Immunopathol Pharmacol. 2006;19:787–94.

    Article  PubMed  CAS  Google Scholar 

  83. Haggerty CL, Ness RB, Kelsey S, Waterer GW. The impact of estrogen and progesterone on asthma. Ann Allergy Asthma Immunol. 2003;90:284–91 quiz 291–3, 347.

    Article  PubMed  CAS  Google Scholar 

  84. Trigunaite A, Dimo J, Jørgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol. 2015;294:87–94.

    Article  PubMed  CAS  Google Scholar 

  85. Ben-Batalla I, Vargas-Delgado ME, von Amsberg G, Janning M, Loges S. Influence of androgens on immunity to self and foreign: effects on immunity and cancer. Front Immunol. 2020;11:1184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Roberts CW, Walker W, Alexander J. Sex-associated hormones and immunity to protozoan parasites. Clin Microbiol Rev. 2001;14:476–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Afshan G, Afzal N, Qureshi S. CD4+CD25(hi) regulatory T cells in healthy males and females mediate gender difference in the prevalence of autoimmune diseases. Clin Lab. 2012;58:567–71.

    PubMed  Google Scholar 

  88. Liva SM, Voskuhl RR. Testosterone acts directly on CD4+ T lymphocytes to increase IL-10 production. J Immunol. 2001;167:2060–7.

    Article  PubMed  CAS  Google Scholar 

  89. Pergola C, Dodt G, Rossi A, Neunhoeffer E, Lawrenz B, Northoff H, et al. ERK-mediated regulation of leukotriene biosynthesis by androgens: a molecular basis for gender differences in inflammation and asthma. Proc Natl Acad Sci U S A. 2008;105:19881–6.

  90. Moulton VR. Sex hormones in acquired immunity and autoimmune disease. Front Immunol. 2018;9:2279.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fuseini H, Yung JA, Cephus JY, Zhang J, Goleniewska K, Polosukhin VV, et al. Testosterone decreases house dust mite-induced type 2 and IL-17A-mediated airway inflammation. J Immunol. 2018;201:1843–54.

    Article  PubMed  CAS  Google Scholar 

  92. Marozkina N, Zein J, DeBoer MD, Logan L, Veri L, Ross K, et al. Dehydroepiandrosterone supplementation may benefit women with asthma who have low androgen levels: a pilot study. Pulm Ther. 2019;5:213–20.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kaur G, Holtzman J, Power J, Ambinder D, Goyal A, Gulati M. Gender inequality in enrollment in late-breaking cardiovascular clinical trials. Circulation. 2021;144:A11028–A11028.

    Article  Google Scholar 

  94. DunnGalvin A, Hourihane JOB, Frewer L, Knibb RC, Elberink JNGO, Klinge I. Incorporating a gender dimension in food allergy research: a review. Allergy. 2006;61:1336–43.

    Article  PubMed  CAS  Google Scholar 

  95. Chen W, Mempel M, Schober W, Behrendt H, Ring J. Gender difference, sex hormones, and immediate type hypersensitivity reactions. Allergy. 2008;63:1418–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

JB, RM-C, MP, and PM-I are supported through Instituto de Salud Carlos III (ISCIII), for the Thematic Networks and Cooperative Research Centres: RICORs REI (RD21/0002/0058). RM-C is a recipient of a grant from the Societat Catalana d’Al.lergologia I Immunologia Clínica (SCAIC_2022-2025) “Hormones impact on the development of food anaphylaxis”.

Author information

Authors and Affiliations

Authors

Contributions

PM-I and RM-C wrote the main manuscript. All authors contributed to the literature review and approved the final version of the manuscript.

Corresponding author

Correspondence to Rosa Muñoz-Cano MD, PhD.

Ethics declarations

Competing interests 

The authors declare no competing interests.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Food Allergy

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir-Ihara, P., González-Matamala, MF., Ruano-Zaragoza, M. et al. Effect of Hormones as Cofactors in Food Allergy. Curr Treat Options Allergy (2024). https://doi.org/10.1007/s40521-024-00359-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40521-024-00359-8

Keywords

Navigation