Skip to main content

Advertisement

Log in

Hereditary Angioedema: Diagnosis, Pathogenesis, and Therapy

  • Urticaria and Atopic Dermatitis (M Furue and T Nakahara, Section Editors)
  • Published:
Current Treatment Options in Allergy Aims and scope Submit manuscript

Abstract

Purpose of Review

This review will focus on our current understanding of the pathogenesis of hereditary angioedema (HAE) and its therapy. HAE is classically meant to describe C1 inhibitor deficiency, a form of angioedema that leads to overproduction of bradykinin due to loss of control of enzymatic reactions. Treatment can be directed to acute attacks and/or focused on prophylaxis to prevent attacks that can vary from peripheral to gastrointestinal, to laryngeal individually or in any combination.

Recent Findings

Acute therapy employs a bradykinin B-2 receptor antagonist, inhibition of plasma kallikrein, or an intravenous bolus of C1 inhibitor. Prophylaxis can include intravenous C1 inhibitor twice weekly, subcutaneous C1 inhibitor, a monoclonal antibody to plasma kallikrein administered every 2 weeks, or an oral plasma kallikrein inhibitor taken daily. There are now 6 types of hereditary angioedema in which C1 inhibitor is normal (HAEN). Whereas many of the therapeutic modalities listed above are helpful, a particular role for tranexamic acid to bind to plasminogen and inhibit plasmin formation, or progesterone to antagonize estrogen effects, have been successfully employed for two of them in which there is a mutation of either factor XII or plasminogen.

Summary

A new finding regarding pathogenesis highlight fibrinolytic proteins including plasmin activation of factor XII which is markedly augmented when factor XII is mutated, and direct activation of both kininogens when plasminogen is mutated and converted to plasmin. A new emphasis on the therapeutic efficacy of transexamic acid and progesterone is associated with HAEN while therapy of types I and II HAE (C1 inhibitor deficiency) have new approaches including administration of subcutaneous C1 INH, or a monoclonal antibody to plasma kallikrein, and an oral once-daily kallikrein inhibitor. A recombinant C1 INH produced in rabbits is available for as-needed treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Donaldson V, Evans R. A biochemical abnormality in hereditary angioneurotic edema. Am J Med. 1963;35:37–44.

    Article  CAS  PubMed  Google Scholar 

  2. Kaplan A, Joseph K. Pathogenesis of hereditary angioedema: the role of the bradykinin forming cascade. Immunol Allergy Clin N Am. 2017;37:513–25.

    Article  Google Scholar 

  3. Kramer J, Rosen F, Colten H, Rajczy K, Strunk R. Transinhibition of C1 inhibitor synthesis in type I hereditary angioneurotic edema. J Clin Immunol. 1993;91(3):1258–62.

    CAS  Google Scholar 

  4. Patston P, Gettins P, Beechem J, Schapira M. Mechanism of serpin action: evidence that C1 inhibitor functions as a suicide substrate. Biochemistry. 1991;30(36):8876–82.

    Article  CAS  PubMed  Google Scholar 

  5. Zahedi R, Aulak K, Eldering E, Davis A III. Characterization of C1 inhibitor-Ta: a dysfunctional C1 INH with deletion of lysine 25. J Biol Chem. 1996;271:24307–12.

    Article  CAS  PubMed  Google Scholar 

  6. Christiansen S, Busse P. Hereditary Angioedema. N Eng. J Med. 2020;382:1136–48.

    Google Scholar 

  7. Bork K, Hardt J, Witzke G. Fatal laryngeal attacks and mortality in hereditary angioedema due to C1-INH deficiency. J Allergy Clin Immunol. 2012;130(3):692–7.

    Article  PubMed  Google Scholar 

  8. Rasmussen E, de Freitas P, Bygum A. Urticaria and prodromal symptoms including erythema marginatum in danish patients with hereditary angioedema. Acta Derm Venereol. 2016;96:373–6.

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen A, Zuraw B, Busse P. Contact system activation during erythemia marginatum in hereditary angioedema. Ann Allergy Asthma Immunol. 2020;124:393–405.

    Article  CAS  Google Scholar 

  10. Fields T, Ghebrehiwet B, Kaplan AP. Kinin formation in hereditary angioedema plasma: evidence against kinin derivation from C2 and in support of “spontaneous” formation of bradykinin. J Allergy Clin Immunol. 1983;72(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  11. Nussberger J, Cugno M, Cicardi M, Agostoni A. Local bradykinin generation in hereditary angioedema. J Allergy Clin Immunol. 1999;104(6):1321–2.

    Article  CAS  PubMed  Google Scholar 

  12. Kaplan A, Ghebrihiwet B. The plasma bradykinin-forming pathways and its interrelationships with complement. Mol Immunol. 2010;47(13):2161–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ghebrehiwet B, Randazzo B, Dunn J, Silverberg M, Kaplan A. Mechanisms of activation of the classical pathway of complement by Hageman factor fragment. J Clin Invest. 1983;71(5):1450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ruddy S, Gigli I, Sheffer A, Austen K, editors. The laboratory diagnosis of hereditary angioedema. Proceedings of the Sixth International Congress of Allergology; 1968; Amsterdam: Excepta Medica.

  15. de Maat S, Joseph K, Maas C, Kaplan A. Blood clotting and the pathogenesis of types I and II hereditary angioedema. Clin Rev Allergy Immunol. 2021;60(3):348–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Reshef A, Zanichelli A, Longhurst H, Relan A, Hack C. Elevated D-dimers in attacks of hereditary angioedema are not associated with increased thrombotic risk. Allergy. 2015;70(5):506–13.

    Article  CAS  PubMed  Google Scholar 

  17. Reshef A, Levy D, Longhurst H, Cicardi M, Craig T, Keith P, et al. Effects of continuous plasma-derived subcutaneous C1-esterase inhibitor on coagulation and fibrinolytic parameters. Thromb Haemost. 2021;121(5):690–3.

    Article  PubMed  Google Scholar 

  18. Cugno M, Cicardi M, Bottasso B, Coppola R, Paonessa R, Mannucci P, et al. Activation of the coagulation cascade in C1-inhibitor deficiencies. Blood. 1997;89(9):3213–8.

    Article  CAS  PubMed  Google Scholar 

  19. Donaldson VH, Rosen FS, Bing DH. Role of the second component of complement (C2) and plasmin in kinin release in hereditary angioneurotic edema (H.A.N.E.) plasma. Trans Assoc Am Phys. 1977;90:174–83.

    CAS  PubMed  Google Scholar 

  20. Smith M, Kerr M. Cleavage of the second component of complement by plasma proteases: implications in hereditary C1-inhibitor deficiency. Immunol. 1985;56(3):561–70.

    CAS  Google Scholar 

  21. Shoemaker L, Schurman S, Donaldson V, Ar D. Hereditary angioneurotic oedema: characterization of plasma kinin and vascular permeability-enhancing activities. Clin Exp Immunol. 1994;95(1):22–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaplan A, Joseph K. Complement, kinins, and hereditary angioedema: mechanisms of plasma instability when C1 inhibitor is absent. Clin Rev Allergy Immunol. 2016;51(2):207–15.

    Article  CAS  PubMed  Google Scholar 

  23. Defendi F, Charignon D, Ghannam A, Baroso R, Csopaki F, Allegret-Cadet M, et al. Enzymatic assays for the diagnosis of bradykinin-dependent angioedema. PLoS One. 2013;8:1–7.

    Article  CAS  Google Scholar 

  24. Schreiber A, Kaplan A, Austen K. Inhibition by C1INH of Hagemann factor fragment activation of coagulation, fibrinolysis, and kinin generation. J Clin Invest. 1973;52(6):1402–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pixley R, Schapira M, Colman R. The regulation of human factor XIIa by plasma proteinase inhibitors. J Biol Chem. 1985;260(3):1723–9.

    Article  CAS  PubMed  Google Scholar 

  26. Harpel P, Lewin M, Kaplan A. Distribution of plasma kallikrein between C-1 inactivator and alpha 2-macroglobulin in plasma utilizing a new assay for alpha 2-macroglobulin-kallikrein complexes. J Biol Chem. 1985;260(7):4257–63.

    Article  CAS  PubMed  Google Scholar 

  27. Ivanov I, Matafonov A, Sun M, Cheng Q, Dickeson S, Verhamme I, et al. Proteolytic properties of single-chain factor XII: a mechanism for triggering contact activation. Blood. 2017;129(11):1527–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Silverberg M, Dunn J, Garen L, Kaplan A. Autoactivation of human Hageman factor. Demonstration utilizing a synthetic substrate. J Biol Chem. 1980;255(15):7281–6.

    Article  CAS  PubMed  Google Scholar 

  29. Weiss R, Silverberg M, Kaplan AP. The effect of C1 inhibitor upon Hageman factor autoactivation. Blood. 1986;68(1):239–43.

    Article  CAS  PubMed  Google Scholar 

  30. Joseph K, Tholanikunnel B, Kaplan A. Factor XII-independent cleavage of high molecular weight kininogen by prekallikrein and inhibition by C1 inhibitor. J Allergy Clin Immunol. 2009;124:143–9.

    Article  CAS  PubMed  Google Scholar 

  31. Ivanov I, Verhamme I, Sun M, Mohammed B, Cheng Q, Matafonov A, et al. Protease activity in single-chain prekallikrein. Blood. 2020;135(8):558–67.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mandle RJ, Kaplan A, Hageman factor substrates. Human plasma prekallikrein: mechanism of activation by Hageman factor and participation in Hageman factor-dependent fibrinolysis. J Biol Chem. 1977;252(17):6097–104.

    Article  CAS  PubMed  Google Scholar 

  33. Cochrane CG, Revak SD, Wuepper KD. Activation of Hageman factor in solid and fluid phases: a critical role of kallikrein. J Exp Med. 1973;138(6):1564–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tankersley DL, Finlayson JS. Kinetics of activation and autoactivation of human factor XII. Biochemistry. 1984;23(2):273–9.

    Article  CAS  PubMed  Google Scholar 

  35. Colman RW. Activation of plasminogen by human plasma kallikrein. Biochem Biophys Res Commun. 1969;35(2):273–9.

    Article  CAS  PubMed  Google Scholar 

  36. Gigli I, Mason JW, Colman RW, Austen KF. Interaction of plasma kallikrein with the C1 inhibitor. J Immunol. 1970;104(3):574–81.

    CAS  PubMed  Google Scholar 

  37. Mandle RJ Jr, Kaplan AP. Hageman-factor-dependent fibrinolysis: generation of fibrinolytic activity by the interaction of human activated factor XI and plasminogen. Blood. 1979;54(4):850–62.

    Article  CAS  PubMed  Google Scholar 

  38. Ichinose A, Fujikawa K, Suyama T. The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin. J Biol Chem. 1986;261(8):3486–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kaplan AP, Austen KF. A prealbumin activator of prekallikrein. II. Derivation of activators of prekallikrein from active Hageman factor by digestion with plasmin. J Exp Med. 1971;133(4):696–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaplan AP, Austen KF. A pre-albumin activator of prekallikrein. J Immunol. 1970;105(4):802–11.

    CAS  PubMed  Google Scholar 

  41. Austen K, Sheffer A. Detection of hereditory angioneurotic edema by demonstration of a reduction in the second component of human complement. N Engl J Med. 1965;272:649–56.

    Article  CAS  PubMed  Google Scholar 

  42. Schmaier AH, Kuo A, Lundberg D, Murray S, Cines DB. The expression of high molecular weight kininogen on human umbilical vein endothelial cells. J Biol Chem. 1988;263(31):16327–33.

    Article  CAS  PubMed  Google Scholar 

  43. Joseph K, Ghebrehiwet B, Peerschke EI, Reid KB, Kaplan AP. Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: identity with the receptor that binds to the globular “heads” of C1q (gC1q-R). Proc Natl Acad Sci U S A. 1996;93(16):8552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mandle R, Colman R, Kaplan A. Identification of prekallikrein and high-molecular-weight kininogen as a complex in human plasma. Proc Natl Acad Sci. 1976;73(11):4179–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Joseph K, Tholanikunnel B, Ghebrehiwet B, Kaplan A. Interaction of high molecular weight kininogen biding proteins on endothelial cells. Thromb Haemost. 2004;91(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  46. Kaira B, Slater A, McCrae K, Dreveny I, Sumya U, Mutch N, et al. Factor XII and kininogen asymmetric assembly with gC1qR/C1QBP/P32 is governed by allostery. Blood. 2020;136(14):1685–97.

    PubMed  Google Scholar 

  47. Mahdi F, Madar ZS, Figueroa CD, Schmaier AH. Factor XII interacts with the multiprotein assembly of urokinase plasminogen activator receptor, gC1qR, and cytokeratin 1 on endothelial cell membranes. Blood. 2002;99(10):3585–96.

    Article  CAS  PubMed  Google Scholar 

  48. Schmaier AH. Contact activation: a revision. Thromb Haemost. 1997;78(1):101–7.

    Article  CAS  PubMed  Google Scholar 

  49. Joseph K, Ghebrehiwet B, Kaplan AP. Activation of the kinin-forming cascade on the surface of endothelial cells. Biol Chem. 2001;382(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  50. Joseph K, Tholanikunnel B, Kaplan A. Heat shock protein 90 catalyzes activation of the prekallikrein-kininogen complex in the absence of factor XII. Proc Natl Acad Sci. 2002;99(2):896–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Joseph K, Tholanikunnel B, Kaplan A. Cytokine and estrogen stimulation of endothelial cells augment activation of the prekallikrein-high molecular weight kininogen complex: implications for hereditary angioedema (HAE). J Allergy Clin Immunol. 2016;140:170–6.

    Article  PubMed  CAS  Google Scholar 

  52. Shariat-Madar Z, Mahdi F, Schmaier A. Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. J Biol Chem. 2002;277(20):17962–9.

    Article  CAS  PubMed  Google Scholar 

  53. Dobo J, Major B, Kekesi K, Szabo I, Megyeri M, Hajela K, et al. Cleavage of kininogen and subsequent bradykinin release by the complement component: mannose-binding lectin-associated serine protease (MASP)-1. PLoS ONE. 2011;6(5):e20036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hansen C, Csuka D, Munthe-Fog L, Varga L, Farkas H, Hansen K, et al. The levels of the lectin pathway serine protease MASP-1 and its complex formation with C1 inhibitor are linked to the severity of hereditary angioedema. J Immunol. 2015;195(8):3596–604.

    Article  CAS  PubMed  Google Scholar 

  55. Leeb-Lundberg L, Marceau F, Muller-Esterl W, Pettibone D, Zuraw B. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev. 2005;57(1):27–77.

    Article  CAS  PubMed  Google Scholar 

  56. Cicardi M, Banerji A, Bracho F. Icatibant, a new bradykinin receptor antogonist in hereditary angioedema. N Engl J Med. 2010;363:532–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Koumbadinga G, Désormeaux A, Adam A, Marceau F. Effect of interferon-γ on inflammatory cytokine-induced bradykinin B1 receptor expression in human vascular cells Eur. Aust J Pharm. 2010;647(1-3):117–25.

    CAS  Google Scholar 

  58. Marceau F, Bouthillier J, Houle S, Sabourin T, Fortin J, Morissette G, et al. Bradykinin receptors: agonists, antagonists, expression, signaling, and adaptation to sustained stimulation. J Angioedema. 2013;1:9–17.

    Google Scholar 

  59. Gelfand JA, Sherins RJ, Alling DW, Frank MM. Treatment of hereditary angioedema with danazol: reversal of clinical and biochemical abnormalities. N Engl J Med. 1976;295(26):1444–8.

    Article  CAS  PubMed  Google Scholar 

  60. Sheffer AL, Fearon DT, Austen KF. Clinical and biochemical effects of stanozolol therapy for hereditary angioedema. J Allergy Clin Immunol. 1981;68(3):181–7.

    Article  CAS  PubMed  Google Scholar 

  61. Hosea S, Santaella M, Brown E, Berger M, Katusha K, Frank M. Long-term therapy of hereditary angioedema with danazol. Ann Intern Med. 1980;93(6):809–12.

    Article  CAS  PubMed  Google Scholar 

  62. Cicardi M, Castelli R, Zingale L, Agostoni A. Side effects of long-term prophylaxis with attenuated androgens in hereditary angioedema: comparison of treated and untreated patients. J Allergy Clin Immunol. 1997;99(2):194–6.

    Article  CAS  PubMed  Google Scholar 

  63. Prematta M, Gibbs J, Pratt E, Stoughton T, Craig T. Fresh frozen plasma for the treatment of hereditary angioedema. Ann Allergy Asthma Immunol. 2007;98(4):383–8.

    Article  PubMed  Google Scholar 

  64. Craig T, Levy R, Wasserman R, Bewtra A, Hurewitz D, Obtulowicz K, et al. Efficacy of human C1 esterase inhibitor concentrate compared with placebo in acute hereditary angioedema attacks. J Allergy Clin Immunol. 2009;124(4):801–8.

    Article  CAS  PubMed  Google Scholar 

  65. Craig T, Bewtra A, Bahna S, Hurewitz D, Schneider L, Levy R, et al. C1 esterase inhibitor concentrate in 1085 hereditary angioedema attacks--final results of the I.M.P.A.C.T.2 study. Allergy. 2011;16(12):1604–11.

    Article  CAS  Google Scholar 

  66. Farkas H, Jakab L, Temesszentandrasi G, Visy B, Harmat G, Fust G, et al. Hereditary angioedema: a decade of human C1-inhibitor concentrate therapy. J Allergy Clin Immunol. 2007;120(4):941–7.

    Article  CAS  PubMed  Google Scholar 

  67. Farkas H, Zotter Z, Csuka D, Szabo E, Nebenfuhrer Z, Temesszentandrasi G, et al. Short-term prophylaxis in hereditary angioedema due to deficiency of the C1-inhibitor – a long-term survey. Allergy. 2012;67(12):1586–93.

    CAS  PubMed  Google Scholar 

  68. Lumry W, Li H, Levy R, Potter P, Farkas H, Moldovan D, et al. Randomized placebo-controlled trial of the bradykinin B2 receptor antagonist icatibant for the treatment of acute attacks of hereditary angioedema: the FAST-3 trial. Ann Allergy Asthma Immunol. 2011;107(6):529–37.

    Article  CAS  PubMed  Google Scholar 

  69. Bork K, Frank J, Grundt B, Schlattmann P, Nussberger J, Kreuz W. Treatment of acute edema attacks in hereditary angioedema with a bradykinin receptor-2 antagonist (Icatibant). J Allergy Clin Immunol. 2007;119(6):1497–503.

    Article  CAS  PubMed  Google Scholar 

  70. Maurer M, Aberer W, Bouillet L, Caballero T, Fabien V, Kanny G, et al. Hereditary angioedema attacks resolve faster and are shorter after early icatibant treatment. PLoS One. 2013;8(2):e53773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cicardi M, Levy R, McNeil D. Ecallantide for the treatment of acute attacks in hereditary angioedema. N Engl J Med. 2010;363:523–31.

    Article  CAS  PubMed  Google Scholar 

  72. Levy R, Lumry W, McNeil D, Li H, Campion M, Horn P, et al. EDEMA4: a phase 3, double-blind study of subcutaneous ecallantide treatment for acute attacks of hereditary angioedema. Ann Allergy Asthma Immunol. 2010;104(6):523–9.

    Article  CAS  PubMed  Google Scholar 

  73. Zuraw B, Cicardi M, Levy R, Nuijens J, Relan A, Visscher S, et al. Recombinant human C1-inhibitor for the treatment of acute angioedema attacks in patients with hereditary angioedema. J Allergy Clin Immunol. 2010;126(4):821–7.

    Article  CAS  PubMed  Google Scholar 

  74. Riedl M, Bernstein J, Li H, Reshef A, Lumry W, Moldovan D, et al. Recombinant human C1-esterase inhibitor relieves symptoms of hereditary angioedema attacks: phase 3, randomized, placebo-controlled trial. Ann Allergy Asthma Immunol. 2014;112(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  75. Bernstein J, Relan A, Harper J, Riedl M. Sustained response of recombinant human C1 esterase inhibitor for acute treatment of hereditary angioedema attacks. Ann Allergy Asthma Immunol. 2017;18(4):452–5.

    Article  CAS  Google Scholar 

  76. Zuraw B, Busse P, White M. Nanofiltered C1 inhibitor concentrate for treatment of hereditary angioedema. N Engl J Med. 2010;363:513–22.

    Article  CAS  PubMed  Google Scholar 

  77. Riedl M, Hurewitz D, Levy R, Busse P, Fitts D, Kalfus I. Nanofiltered C1 esterase inhibitor (human) for the treatment of acute attacks of hereditary angioedema: an open-label trial. Ann Allergy Asthma Immunol. 2012;108(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  78. Longhurst H, Cicardi M, Craig T, Bork K, Grattan C, Baker J, et al. Prevention of hereditary angioedema attacks with a subcutaneous C1 inhibitor. N Engl J Med. 2017;376:1131–40.

    Article  CAS  PubMed  Google Scholar 

  79. Zuraw B, Cicardi M, Longhurst H, Bernstein J, Li H, Magerl M, et al. Phase II study results of a replacement therapy for hereditary angioedema with subcutaneous C1-inhibitor concentrate. Allergy. 2015;70(10):1319–28.

    Article  CAS  PubMed  Google Scholar 

  80. Bernstein J, Schwartz L, Yang W, Baker J, Anderson J, Farkas H, et al. Long-term safety and efficacy of subcutaneous C1-inhibitor in older patients with hereditary angioedema. Ann Allergy Asthma Immunol. 2020;123(3):334–40.

    Article  CAS  Google Scholar 

  81. Craig T, Lumry W, Cicardi M, Zuraw B, Bernstein J, Anderson J, et al. Treatment effect of switching from intravenous to subcutaneous C1-inhibitor for prevention of hereditary angioedema attacks: COMPACT subgroup findings. J Allergy Clin Immunol Pract. 2019;7(6):2035–7.

    Article  PubMed  Google Scholar 

  82. Banerji A, Busse P, Shennak M, Lumry W, Davis-Lorton M, Wedner H, et al. Inhibiting plasma kallikrein for hereditary angioedema prophylaxis. N Engl J Med. 2017;276:717–28.

    Article  Google Scholar 

  83. Banerji A, Riedl M, Bernstein J, Cicardi M, Longhurst H, Zuraw B, et al. Effect of lanadelumab compared with placebo on prevention of hereditary angioedema attacks: a randomized clinical trial. JAMA. 2018;320(2):2108–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Riedl M, Maurer M, Bernstein J, Banerji A, Longhurst H, Li H, et al. Lanadelumab demonstrates rapid and sustained prevention of hereditary angioedema attacks. Allergy. 2020;75(11):2879–87 A monthly therapy employing a monoclonal antibody to plasma kallikrein represented an important advance for the therapy of C1 inhibitor deficiency or potentiallly any type of angioedema in which plasma kallikrein is activated.

    Article  CAS  PubMed  Google Scholar 

  85. Bova M, Valerieva A, Wu M, Senter R, Perego F. Lanadelumab injection treatment for the prevention of hereditary angioedema (HAE): design, development and place in therapy. Drug Des Dev Ther. 2019;13:3635–46.

    Article  CAS  Google Scholar 

  86. Aygören-Pürsün E, Bygum A, Grivcheva-Panovska V, Magerl M, Graff J, Steiner U, et al. Oral plasma kallikrein inhibitor for prophylaxis in hereditary angioedema. N Engl J Med. 2019;379:352–62.

    Article  Google Scholar 

  87. Zuraw B, Lumry W, Johnston D, Aygören-Pürsün E, Banerji A, Bernstein D, et al. Oral once-daily berotralstat for the prevention of hereditary angioedema attacks: a randomized, double-blind, placebo-controlled phase 3 trial. J Allergy Clin Immunol. 2021;148(1):164–72 The first oral agent for therapy of types I and II hereditary angioedema represents a major advance in ease of administration of effective therapy.

    Article  CAS  PubMed  Google Scholar 

  88. Wedner H, Aygören-Pürsün E, Bernstein J, Craig T, Gower R, Jacobs J, et al. Randomized trial of the efficacy and safety of berotralstat (BCX7353) as an oral prophylactic therapy for hereditary angioedema: results of APeX-2 through 48 weeks (Part 2). J Allergy Clin Immunol. 2021;9(6):2305–14.

    CAS  Google Scholar 

  89. Busse P, Kaplan A. Specific targeting of plasma kallikrein for treatment of hereditary angioedema: a revolutionary decade. J Allergy Clin Immunol Pract. 2022;10(3):716–22.

    Article  CAS  PubMed  Google Scholar 

  90. Busse P, Christiansen S, Riedl M, Banerji A, Bernstein J, Castaldo A, et al. US HAEA Medical Advisory Board 2020 guidelines for the management of hereditary angioedema. J Allergy Clin Immunol Pract. 2021;9(1):132–50.

    Article  PubMed  Google Scholar 

  91. Faucette R, Conley G, Cosic J, Kopaczk S. ELISA for the detection of cleaved high molecular weight kininogen in human plasma. Allergy. 2016;71(suppl):556–7.

    Google Scholar 

  92. Hofman Z, de Maat S, Suffritti C, Zanichelli A, van Doorn C, Sebastian S, et al. Cleaved kininogen as a biomarker for bradykinin release in hereditary angioedema. J Allergy Clin Immunol. 2017;140(6):1700–3.

    Article  CAS  PubMed  Google Scholar 

  93. Suffritti C, Zanichelli A, Maggioni L, Bonanni E, Cugno M, Cicardi C. High-molecular-weight kininogen cleavage correlates with disease states in the bradykinin-mediated angioedema due to hereditary C1-inhibitor deficiency. Clin Exp Allergy. 2014;44(12):1503–14.

    Article  CAS  PubMed  Google Scholar 

  94. Berrettini M, Lämmle B, White T, Heeb M, Schwarz H, Zuraw B, et al. Detection of in vitro and in vivo cleavage of high molecular weight kininogen in human plasma by immunoblotting with monoclonal antibodies. Blood. 1986;68(2):455–62.

    Article  CAS  PubMed  Google Scholar 

  95. Cugno M, Tedeschi A, Nussberger J. Bradykinin in idiopathic non-histaminergic angioedema. Clin Exp Allergy. 2017;47(1):139–40.

    Article  CAS  PubMed  Google Scholar 

  96. Lara-Marquez M, Christiansen S, Riedl M, Herschbach J, Zuraw B, Hide M. Threshold-stimulated kallikrein activity distinguishes bradykinin- from histamine-mediated angioedema. Clin Exp Allergy. 2018;48(Suppl 1):1429–38.

    Article  CAS  PubMed  Google Scholar 

  97. Bork K, Wulff K, Steinmüller-Magin L, Braenne I, Staubach-Renz P, Witzke G, et al. Hereditary angioedema with a mutation in the plasminogen gene. Allergy. 2018;73(2):442–50.

    Article  CAS  PubMed  Google Scholar 

  98. Dewald G. A missense mutation in the plasminogen gene, within the plasminogen kringle 3 domain, in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun. 2018;498(1):193–8.

    Article  CAS  PubMed  Google Scholar 

  99. Bork K, Wulff K, Hardt J, Witzke G, Staubach P. Hereditary angioedema caused by missense mutations in the factor XII gene: clinical features, trigger factors, and therapy. J Allergy Clin Immunol. 2009;124(1):129–34.

    Article  CAS  PubMed  Google Scholar 

  100. Bork K, Wulff K, Rossmann H, Steinmüller-Magin L, Braenne I, Witzke G, et al. Hereditary angioedema cosegregating with a novel kininogen 1 gene mutation changing the N-terminal cleavage site of bradykinin. Allergy. 2019;74(2):2479–81.

    Article  PubMed  Google Scholar 

  101. Bork K, Wulff K, Möhl B, Steinmüller-Magin L, Witzke G, Hardt J, et al. Novel hereditary angioedema linked with a heparan sulfate 3-O-sulfotransferase 6 gene mutation. J Allergy Clin Immunol. 2021;148(4):1041–8.

    Article  CAS  PubMed  Google Scholar 

  102. Bafunno V, Firinu D, D'Apolito M, Cordisco G, Loffredo S, Leccese A, et al. Mutation of the angiopoietin-1 gene (ANGPT1) associates with a new type of hereditary angioedema. J Allergy Clin Immunol. 2018;141(3):1009–17.

    Article  CAS  PubMed  Google Scholar 

  103. Ariano A, D'Apolito M, Bova M, Bellanti F, Loffredo S, D'Andrea G, et al. A myoferlin gain-of-function variant associates with a new type of hereditary angioedema. Allergy. 2020;75(11):2989–92.

    Article  CAS  PubMed  Google Scholar 

  104. Binkley K, Ar D. Clinical, biochemical, and genetic characterization of a novel estrogen-dependent inherited form of angioedema. J Allergy Clin Immunol. 2000;106(3):546–50.

    Article  CAS  PubMed  Google Scholar 

  105. Bjorkqvist J, de Maat S, Lewandrowski U, Di Gennaro A, Oschatz C, Schong K, et al. Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III. J Clin Invest. 2015;125:3132–46.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Larrauri B, Hester C, Jiang H, Miletic V, Malbran A, Bork K, et al. sgp120 and the contact system in hereditary angioedema: a diagnostic tool in HAE with normal C1 inhibitor. Mol Immunol. 2020;119:27–34.

    Article  CAS  PubMed  Google Scholar 

  107. de Maat S, Bjorkqvist J, Suffritti C, Wiesenekker C, Nagtegaal W, Koekman A, et al. Plasmin is a natural trigger for bradykinin production in hereditary angioedema with factor XII mutation. J Allergy Clin Immunol. 2016;138:1414–23 Highlights a known antibody of plasmin to activate factor XII, but which turns out to be a critical step in activation of the bradykinin cascade when the factor XII is mutated. An important advance in understanding the linkage among the cascades that involve coagulation, fibrinolysis, and bradykinin formation.

    Article  PubMed  CAS  Google Scholar 

  108. Ivanov I, Matafonov A, Sun M, Mohammed B, Cheng Q, Dickeson S, et al. A mechanism for hereditary angioedema with normal C1 inhibitor: an inhibitory regulatory role for the factor XII heavy chain. Blood. 2019;133(10):1152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bork K, Wulff K, Witzke G, Hardt J. Treatment for hereditary angioedema with normal C1-INH and specific mutations in the F12 gene (HAE-FXII). Allergy. 2017;72(2):320–4.

    Article  CAS  PubMed  Google Scholar 

  110. Dickeson S, Kumar S, Sun M, Mohammed B, Phillips D, Whisstock J, et al. A Mechanism for hereditary angioedema caused by a lysine311 to glutamic acid substitution in plasminogen blood. 2020. https://doi.org/10.1182/blood.2021012945. A new surprising discovery of the mechanism of angioedema when plasminogen is mutated which creates a mutated plasmin whose activity is to directly cleave both low and high molecular weight kininogens, thereby bypassing factor XII and prekallikrein. It is also the first time bradykinin formation from low molecular weight kininogen is linked to any form of angioedema.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen P. Kaplan M.D..

Ethics declarations

Conflict of Interest

Review cases for adjudication of allergic reactions for Novartis, Genentech, Roche, Astra Zeneca, Sanofi-Aventis, and Abb-RISA. Consultant for BioCryst, Pharvaria, Biomarin, CSL-Behring, Novartis, Celldex, Annexon, and Takeda Pharmin.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Urticaria and Atopic Dermatitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, A.P. Hereditary Angioedema: Diagnosis, Pathogenesis, and Therapy. Curr Treat Options Allergy 9, 118–136 (2022). https://doi.org/10.1007/s40521-022-00308-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40521-022-00308-3

Keywords

Navigation