Abstract
Purpose of Review
This review will focus on our current understanding of the pathogenesis of hereditary angioedema (HAE) and its therapy. HAE is classically meant to describe C1 inhibitor deficiency, a form of angioedema that leads to overproduction of bradykinin due to loss of control of enzymatic reactions. Treatment can be directed to acute attacks and/or focused on prophylaxis to prevent attacks that can vary from peripheral to gastrointestinal, to laryngeal individually or in any combination.
Recent Findings
Acute therapy employs a bradykinin B-2 receptor antagonist, inhibition of plasma kallikrein, or an intravenous bolus of C1 inhibitor. Prophylaxis can include intravenous C1 inhibitor twice weekly, subcutaneous C1 inhibitor, a monoclonal antibody to plasma kallikrein administered every 2 weeks, or an oral plasma kallikrein inhibitor taken daily. There are now 6 types of hereditary angioedema in which C1 inhibitor is normal (HAEN). Whereas many of the therapeutic modalities listed above are helpful, a particular role for tranexamic acid to bind to plasminogen and inhibit plasmin formation, or progesterone to antagonize estrogen effects, have been successfully employed for two of them in which there is a mutation of either factor XII or plasminogen.
Summary
A new finding regarding pathogenesis highlight fibrinolytic proteins including plasmin activation of factor XII which is markedly augmented when factor XII is mutated, and direct activation of both kininogens when plasminogen is mutated and converted to plasmin. A new emphasis on the therapeutic efficacy of transexamic acid and progesterone is associated with HAEN while therapy of types I and II HAE (C1 inhibitor deficiency) have new approaches including administration of subcutaneous C1 INH, or a monoclonal antibody to plasma kallikrein, and an oral once-daily kallikrein inhibitor. A recombinant C1 INH produced in rabbits is available for as-needed treatment.
Similar content being viewed by others
References and Recommended Reading
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
Donaldson V, Evans R. A biochemical abnormality in hereditary angioneurotic edema. Am J Med. 1963;35:37–44.
Kaplan A, Joseph K. Pathogenesis of hereditary angioedema: the role of the bradykinin forming cascade. Immunol Allergy Clin N Am. 2017;37:513–25.
Kramer J, Rosen F, Colten H, Rajczy K, Strunk R. Transinhibition of C1 inhibitor synthesis in type I hereditary angioneurotic edema. J Clin Immunol. 1993;91(3):1258–62.
Patston P, Gettins P, Beechem J, Schapira M. Mechanism of serpin action: evidence that C1 inhibitor functions as a suicide substrate. Biochemistry. 1991;30(36):8876–82.
Zahedi R, Aulak K, Eldering E, Davis A III. Characterization of C1 inhibitor-Ta: a dysfunctional C1 INH with deletion of lysine 25. J Biol Chem. 1996;271:24307–12.
Christiansen S, Busse P. Hereditary Angioedema. N Eng. J Med. 2020;382:1136–48.
Bork K, Hardt J, Witzke G. Fatal laryngeal attacks and mortality in hereditary angioedema due to C1-INH deficiency. J Allergy Clin Immunol. 2012;130(3):692–7.
Rasmussen E, de Freitas P, Bygum A. Urticaria and prodromal symptoms including erythema marginatum in danish patients with hereditary angioedema. Acta Derm Venereol. 2016;96:373–6.
Nguyen A, Zuraw B, Busse P. Contact system activation during erythemia marginatum in hereditary angioedema. Ann Allergy Asthma Immunol. 2020;124:393–405.
Fields T, Ghebrehiwet B, Kaplan AP. Kinin formation in hereditary angioedema plasma: evidence against kinin derivation from C2 and in support of “spontaneous” formation of bradykinin. J Allergy Clin Immunol. 1983;72(1):54–60.
Nussberger J, Cugno M, Cicardi M, Agostoni A. Local bradykinin generation in hereditary angioedema. J Allergy Clin Immunol. 1999;104(6):1321–2.
Kaplan A, Ghebrihiwet B. The plasma bradykinin-forming pathways and its interrelationships with complement. Mol Immunol. 2010;47(13):2161–9.
Ghebrehiwet B, Randazzo B, Dunn J, Silverberg M, Kaplan A. Mechanisms of activation of the classical pathway of complement by Hageman factor fragment. J Clin Invest. 1983;71(5):1450–6.
Ruddy S, Gigli I, Sheffer A, Austen K, editors. The laboratory diagnosis of hereditary angioedema. Proceedings of the Sixth International Congress of Allergology; 1968; Amsterdam: Excepta Medica.
de Maat S, Joseph K, Maas C, Kaplan A. Blood clotting and the pathogenesis of types I and II hereditary angioedema. Clin Rev Allergy Immunol. 2021;60(3):348–56.
Reshef A, Zanichelli A, Longhurst H, Relan A, Hack C. Elevated D-dimers in attacks of hereditary angioedema are not associated with increased thrombotic risk. Allergy. 2015;70(5):506–13.
Reshef A, Levy D, Longhurst H, Cicardi M, Craig T, Keith P, et al. Effects of continuous plasma-derived subcutaneous C1-esterase inhibitor on coagulation and fibrinolytic parameters. Thromb Haemost. 2021;121(5):690–3.
Cugno M, Cicardi M, Bottasso B, Coppola R, Paonessa R, Mannucci P, et al. Activation of the coagulation cascade in C1-inhibitor deficiencies. Blood. 1997;89(9):3213–8.
Donaldson VH, Rosen FS, Bing DH. Role of the second component of complement (C2) and plasmin in kinin release in hereditary angioneurotic edema (H.A.N.E.) plasma. Trans Assoc Am Phys. 1977;90:174–83.
Smith M, Kerr M. Cleavage of the second component of complement by plasma proteases: implications in hereditary C1-inhibitor deficiency. Immunol. 1985;56(3):561–70.
Shoemaker L, Schurman S, Donaldson V, Ar D. Hereditary angioneurotic oedema: characterization of plasma kinin and vascular permeability-enhancing activities. Clin Exp Immunol. 1994;95(1):22–8.
Kaplan A, Joseph K. Complement, kinins, and hereditary angioedema: mechanisms of plasma instability when C1 inhibitor is absent. Clin Rev Allergy Immunol. 2016;51(2):207–15.
Defendi F, Charignon D, Ghannam A, Baroso R, Csopaki F, Allegret-Cadet M, et al. Enzymatic assays for the diagnosis of bradykinin-dependent angioedema. PLoS One. 2013;8:1–7.
Schreiber A, Kaplan A, Austen K. Inhibition by C1INH of Hagemann factor fragment activation of coagulation, fibrinolysis, and kinin generation. J Clin Invest. 1973;52(6):1402–9.
Pixley R, Schapira M, Colman R. The regulation of human factor XIIa by plasma proteinase inhibitors. J Biol Chem. 1985;260(3):1723–9.
Harpel P, Lewin M, Kaplan A. Distribution of plasma kallikrein between C-1 inactivator and alpha 2-macroglobulin in plasma utilizing a new assay for alpha 2-macroglobulin-kallikrein complexes. J Biol Chem. 1985;260(7):4257–63.
Ivanov I, Matafonov A, Sun M, Cheng Q, Dickeson S, Verhamme I, et al. Proteolytic properties of single-chain factor XII: a mechanism for triggering contact activation. Blood. 2017;129(11):1527–37.
Silverberg M, Dunn J, Garen L, Kaplan A. Autoactivation of human Hageman factor. Demonstration utilizing a synthetic substrate. J Biol Chem. 1980;255(15):7281–6.
Weiss R, Silverberg M, Kaplan AP. The effect of C1 inhibitor upon Hageman factor autoactivation. Blood. 1986;68(1):239–43.
Joseph K, Tholanikunnel B, Kaplan A. Factor XII-independent cleavage of high molecular weight kininogen by prekallikrein and inhibition by C1 inhibitor. J Allergy Clin Immunol. 2009;124:143–9.
Ivanov I, Verhamme I, Sun M, Mohammed B, Cheng Q, Matafonov A, et al. Protease activity in single-chain prekallikrein. Blood. 2020;135(8):558–67.
Mandle RJ, Kaplan A, Hageman factor substrates. Human plasma prekallikrein: mechanism of activation by Hageman factor and participation in Hageman factor-dependent fibrinolysis. J Biol Chem. 1977;252(17):6097–104.
Cochrane CG, Revak SD, Wuepper KD. Activation of Hageman factor in solid and fluid phases: a critical role of kallikrein. J Exp Med. 1973;138(6):1564–83.
Tankersley DL, Finlayson JS. Kinetics of activation and autoactivation of human factor XII. Biochemistry. 1984;23(2):273–9.
Colman RW. Activation of plasminogen by human plasma kallikrein. Biochem Biophys Res Commun. 1969;35(2):273–9.
Gigli I, Mason JW, Colman RW, Austen KF. Interaction of plasma kallikrein with the C1 inhibitor. J Immunol. 1970;104(3):574–81.
Mandle RJ Jr, Kaplan AP. Hageman-factor-dependent fibrinolysis: generation of fibrinolytic activity by the interaction of human activated factor XI and plasminogen. Blood. 1979;54(4):850–62.
Ichinose A, Fujikawa K, Suyama T. The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin. J Biol Chem. 1986;261(8):3486–9.
Kaplan AP, Austen KF. A prealbumin activator of prekallikrein. II. Derivation of activators of prekallikrein from active Hageman factor by digestion with plasmin. J Exp Med. 1971;133(4):696–712.
Kaplan AP, Austen KF. A pre-albumin activator of prekallikrein. J Immunol. 1970;105(4):802–11.
Austen K, Sheffer A. Detection of hereditory angioneurotic edema by demonstration of a reduction in the second component of human complement. N Engl J Med. 1965;272:649–56.
Schmaier AH, Kuo A, Lundberg D, Murray S, Cines DB. The expression of high molecular weight kininogen on human umbilical vein endothelial cells. J Biol Chem. 1988;263(31):16327–33.
Joseph K, Ghebrehiwet B, Peerschke EI, Reid KB, Kaplan AP. Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: identity with the receptor that binds to the globular “heads” of C1q (gC1q-R). Proc Natl Acad Sci U S A. 1996;93(16):8552–7.
Mandle R, Colman R, Kaplan A. Identification of prekallikrein and high-molecular-weight kininogen as a complex in human plasma. Proc Natl Acad Sci. 1976;73(11):4179–83.
Joseph K, Tholanikunnel B, Ghebrehiwet B, Kaplan A. Interaction of high molecular weight kininogen biding proteins on endothelial cells. Thromb Haemost. 2004;91(1):61–70.
Kaira B, Slater A, McCrae K, Dreveny I, Sumya U, Mutch N, et al. Factor XII and kininogen asymmetric assembly with gC1qR/C1QBP/P32 is governed by allostery. Blood. 2020;136(14):1685–97.
Mahdi F, Madar ZS, Figueroa CD, Schmaier AH. Factor XII interacts with the multiprotein assembly of urokinase plasminogen activator receptor, gC1qR, and cytokeratin 1 on endothelial cell membranes. Blood. 2002;99(10):3585–96.
Schmaier AH. Contact activation: a revision. Thromb Haemost. 1997;78(1):101–7.
Joseph K, Ghebrehiwet B, Kaplan AP. Activation of the kinin-forming cascade on the surface of endothelial cells. Biol Chem. 2001;382(1):71–5.
Joseph K, Tholanikunnel B, Kaplan A. Heat shock protein 90 catalyzes activation of the prekallikrein-kininogen complex in the absence of factor XII. Proc Natl Acad Sci. 2002;99(2):896–900.
Joseph K, Tholanikunnel B, Kaplan A. Cytokine and estrogen stimulation of endothelial cells augment activation of the prekallikrein-high molecular weight kininogen complex: implications for hereditary angioedema (HAE). J Allergy Clin Immunol. 2016;140:170–6.
Shariat-Madar Z, Mahdi F, Schmaier A. Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. J Biol Chem. 2002;277(20):17962–9.
Dobo J, Major B, Kekesi K, Szabo I, Megyeri M, Hajela K, et al. Cleavage of kininogen and subsequent bradykinin release by the complement component: mannose-binding lectin-associated serine protease (MASP)-1. PLoS ONE. 2011;6(5):e20036.
Hansen C, Csuka D, Munthe-Fog L, Varga L, Farkas H, Hansen K, et al. The levels of the lectin pathway serine protease MASP-1 and its complex formation with C1 inhibitor are linked to the severity of hereditary angioedema. J Immunol. 2015;195(8):3596–604.
Leeb-Lundberg L, Marceau F, Muller-Esterl W, Pettibone D, Zuraw B. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev. 2005;57(1):27–77.
Cicardi M, Banerji A, Bracho F. Icatibant, a new bradykinin receptor antogonist in hereditary angioedema. N Engl J Med. 2010;363:532–41.
Koumbadinga G, Désormeaux A, Adam A, Marceau F. Effect of interferon-γ on inflammatory cytokine-induced bradykinin B1 receptor expression in human vascular cells Eur. Aust J Pharm. 2010;647(1-3):117–25.
Marceau F, Bouthillier J, Houle S, Sabourin T, Fortin J, Morissette G, et al. Bradykinin receptors: agonists, antagonists, expression, signaling, and adaptation to sustained stimulation. J Angioedema. 2013;1:9–17.
Gelfand JA, Sherins RJ, Alling DW, Frank MM. Treatment of hereditary angioedema with danazol: reversal of clinical and biochemical abnormalities. N Engl J Med. 1976;295(26):1444–8.
Sheffer AL, Fearon DT, Austen KF. Clinical and biochemical effects of stanozolol therapy for hereditary angioedema. J Allergy Clin Immunol. 1981;68(3):181–7.
Hosea S, Santaella M, Brown E, Berger M, Katusha K, Frank M. Long-term therapy of hereditary angioedema with danazol. Ann Intern Med. 1980;93(6):809–12.
Cicardi M, Castelli R, Zingale L, Agostoni A. Side effects of long-term prophylaxis with attenuated androgens in hereditary angioedema: comparison of treated and untreated patients. J Allergy Clin Immunol. 1997;99(2):194–6.
Prematta M, Gibbs J, Pratt E, Stoughton T, Craig T. Fresh frozen plasma for the treatment of hereditary angioedema. Ann Allergy Asthma Immunol. 2007;98(4):383–8.
Craig T, Levy R, Wasserman R, Bewtra A, Hurewitz D, Obtulowicz K, et al. Efficacy of human C1 esterase inhibitor concentrate compared with placebo in acute hereditary angioedema attacks. J Allergy Clin Immunol. 2009;124(4):801–8.
Craig T, Bewtra A, Bahna S, Hurewitz D, Schneider L, Levy R, et al. C1 esterase inhibitor concentrate in 1085 hereditary angioedema attacks--final results of the I.M.P.A.C.T.2 study. Allergy. 2011;16(12):1604–11.
Farkas H, Jakab L, Temesszentandrasi G, Visy B, Harmat G, Fust G, et al. Hereditary angioedema: a decade of human C1-inhibitor concentrate therapy. J Allergy Clin Immunol. 2007;120(4):941–7.
Farkas H, Zotter Z, Csuka D, Szabo E, Nebenfuhrer Z, Temesszentandrasi G, et al. Short-term prophylaxis in hereditary angioedema due to deficiency of the C1-inhibitor – a long-term survey. Allergy. 2012;67(12):1586–93.
Lumry W, Li H, Levy R, Potter P, Farkas H, Moldovan D, et al. Randomized placebo-controlled trial of the bradykinin B2 receptor antagonist icatibant for the treatment of acute attacks of hereditary angioedema: the FAST-3 trial. Ann Allergy Asthma Immunol. 2011;107(6):529–37.
Bork K, Frank J, Grundt B, Schlattmann P, Nussberger J, Kreuz W. Treatment of acute edema attacks in hereditary angioedema with a bradykinin receptor-2 antagonist (Icatibant). J Allergy Clin Immunol. 2007;119(6):1497–503.
Maurer M, Aberer W, Bouillet L, Caballero T, Fabien V, Kanny G, et al. Hereditary angioedema attacks resolve faster and are shorter after early icatibant treatment. PLoS One. 2013;8(2):e53773.
Cicardi M, Levy R, McNeil D. Ecallantide for the treatment of acute attacks in hereditary angioedema. N Engl J Med. 2010;363:523–31.
Levy R, Lumry W, McNeil D, Li H, Campion M, Horn P, et al. EDEMA4: a phase 3, double-blind study of subcutaneous ecallantide treatment for acute attacks of hereditary angioedema. Ann Allergy Asthma Immunol. 2010;104(6):523–9.
Zuraw B, Cicardi M, Levy R, Nuijens J, Relan A, Visscher S, et al. Recombinant human C1-inhibitor for the treatment of acute angioedema attacks in patients with hereditary angioedema. J Allergy Clin Immunol. 2010;126(4):821–7.
Riedl M, Bernstein J, Li H, Reshef A, Lumry W, Moldovan D, et al. Recombinant human C1-esterase inhibitor relieves symptoms of hereditary angioedema attacks: phase 3, randomized, placebo-controlled trial. Ann Allergy Asthma Immunol. 2014;112(2):163–9.
Bernstein J, Relan A, Harper J, Riedl M. Sustained response of recombinant human C1 esterase inhibitor for acute treatment of hereditary angioedema attacks. Ann Allergy Asthma Immunol. 2017;18(4):452–5.
Zuraw B, Busse P, White M. Nanofiltered C1 inhibitor concentrate for treatment of hereditary angioedema. N Engl J Med. 2010;363:513–22.
Riedl M, Hurewitz D, Levy R, Busse P, Fitts D, Kalfus I. Nanofiltered C1 esterase inhibitor (human) for the treatment of acute attacks of hereditary angioedema: an open-label trial. Ann Allergy Asthma Immunol. 2012;108(1):49–53.
Longhurst H, Cicardi M, Craig T, Bork K, Grattan C, Baker J, et al. Prevention of hereditary angioedema attacks with a subcutaneous C1 inhibitor. N Engl J Med. 2017;376:1131–40.
Zuraw B, Cicardi M, Longhurst H, Bernstein J, Li H, Magerl M, et al. Phase II study results of a replacement therapy for hereditary angioedema with subcutaneous C1-inhibitor concentrate. Allergy. 2015;70(10):1319–28.
Bernstein J, Schwartz L, Yang W, Baker J, Anderson J, Farkas H, et al. Long-term safety and efficacy of subcutaneous C1-inhibitor in older patients with hereditary angioedema. Ann Allergy Asthma Immunol. 2020;123(3):334–40.
Craig T, Lumry W, Cicardi M, Zuraw B, Bernstein J, Anderson J, et al. Treatment effect of switching from intravenous to subcutaneous C1-inhibitor for prevention of hereditary angioedema attacks: COMPACT subgroup findings. J Allergy Clin Immunol Pract. 2019;7(6):2035–7.
Banerji A, Busse P, Shennak M, Lumry W, Davis-Lorton M, Wedner H, et al. Inhibiting plasma kallikrein for hereditary angioedema prophylaxis. N Engl J Med. 2017;276:717–28.
Banerji A, Riedl M, Bernstein J, Cicardi M, Longhurst H, Zuraw B, et al. Effect of lanadelumab compared with placebo on prevention of hereditary angioedema attacks: a randomized clinical trial. JAMA. 2018;320(2):2108–21.
Riedl M, Maurer M, Bernstein J, Banerji A, Longhurst H, Li H, et al. Lanadelumab demonstrates rapid and sustained prevention of hereditary angioedema attacks. Allergy. 2020;75(11):2879–87 A monthly therapy employing a monoclonal antibody to plasma kallikrein represented an important advance for the therapy of C1 inhibitor deficiency or potentiallly any type of angioedema in which plasma kallikrein is activated.
Bova M, Valerieva A, Wu M, Senter R, Perego F. Lanadelumab injection treatment for the prevention of hereditary angioedema (HAE): design, development and place in therapy. Drug Des Dev Ther. 2019;13:3635–46.
Aygören-Pürsün E, Bygum A, Grivcheva-Panovska V, Magerl M, Graff J, Steiner U, et al. Oral plasma kallikrein inhibitor for prophylaxis in hereditary angioedema. N Engl J Med. 2019;379:352–62.
Zuraw B, Lumry W, Johnston D, Aygören-Pürsün E, Banerji A, Bernstein D, et al. Oral once-daily berotralstat for the prevention of hereditary angioedema attacks: a randomized, double-blind, placebo-controlled phase 3 trial. J Allergy Clin Immunol. 2021;148(1):164–72 The first oral agent for therapy of types I and II hereditary angioedema represents a major advance in ease of administration of effective therapy.
Wedner H, Aygören-Pürsün E, Bernstein J, Craig T, Gower R, Jacobs J, et al. Randomized trial of the efficacy and safety of berotralstat (BCX7353) as an oral prophylactic therapy for hereditary angioedema: results of APeX-2 through 48 weeks (Part 2). J Allergy Clin Immunol. 2021;9(6):2305–14.
Busse P, Kaplan A. Specific targeting of plasma kallikrein for treatment of hereditary angioedema: a revolutionary decade. J Allergy Clin Immunol Pract. 2022;10(3):716–22.
Busse P, Christiansen S, Riedl M, Banerji A, Bernstein J, Castaldo A, et al. US HAEA Medical Advisory Board 2020 guidelines for the management of hereditary angioedema. J Allergy Clin Immunol Pract. 2021;9(1):132–50.
Faucette R, Conley G, Cosic J, Kopaczk S. ELISA for the detection of cleaved high molecular weight kininogen in human plasma. Allergy. 2016;71(suppl):556–7.
Hofman Z, de Maat S, Suffritti C, Zanichelli A, van Doorn C, Sebastian S, et al. Cleaved kininogen as a biomarker for bradykinin release in hereditary angioedema. J Allergy Clin Immunol. 2017;140(6):1700–3.
Suffritti C, Zanichelli A, Maggioni L, Bonanni E, Cugno M, Cicardi C. High-molecular-weight kininogen cleavage correlates with disease states in the bradykinin-mediated angioedema due to hereditary C1-inhibitor deficiency. Clin Exp Allergy. 2014;44(12):1503–14.
Berrettini M, Lämmle B, White T, Heeb M, Schwarz H, Zuraw B, et al. Detection of in vitro and in vivo cleavage of high molecular weight kininogen in human plasma by immunoblotting with monoclonal antibodies. Blood. 1986;68(2):455–62.
Cugno M, Tedeschi A, Nussberger J. Bradykinin in idiopathic non-histaminergic angioedema. Clin Exp Allergy. 2017;47(1):139–40.
Lara-Marquez M, Christiansen S, Riedl M, Herschbach J, Zuraw B, Hide M. Threshold-stimulated kallikrein activity distinguishes bradykinin- from histamine-mediated angioedema. Clin Exp Allergy. 2018;48(Suppl 1):1429–38.
Bork K, Wulff K, Steinmüller-Magin L, Braenne I, Staubach-Renz P, Witzke G, et al. Hereditary angioedema with a mutation in the plasminogen gene. Allergy. 2018;73(2):442–50.
Dewald G. A missense mutation in the plasminogen gene, within the plasminogen kringle 3 domain, in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun. 2018;498(1):193–8.
Bork K, Wulff K, Hardt J, Witzke G, Staubach P. Hereditary angioedema caused by missense mutations in the factor XII gene: clinical features, trigger factors, and therapy. J Allergy Clin Immunol. 2009;124(1):129–34.
Bork K, Wulff K, Rossmann H, Steinmüller-Magin L, Braenne I, Witzke G, et al. Hereditary angioedema cosegregating with a novel kininogen 1 gene mutation changing the N-terminal cleavage site of bradykinin. Allergy. 2019;74(2):2479–81.
Bork K, Wulff K, Möhl B, Steinmüller-Magin L, Witzke G, Hardt J, et al. Novel hereditary angioedema linked with a heparan sulfate 3-O-sulfotransferase 6 gene mutation. J Allergy Clin Immunol. 2021;148(4):1041–8.
Bafunno V, Firinu D, D'Apolito M, Cordisco G, Loffredo S, Leccese A, et al. Mutation of the angiopoietin-1 gene (ANGPT1) associates with a new type of hereditary angioedema. J Allergy Clin Immunol. 2018;141(3):1009–17.
Ariano A, D'Apolito M, Bova M, Bellanti F, Loffredo S, D'Andrea G, et al. A myoferlin gain-of-function variant associates with a new type of hereditary angioedema. Allergy. 2020;75(11):2989–92.
Binkley K, Ar D. Clinical, biochemical, and genetic characterization of a novel estrogen-dependent inherited form of angioedema. J Allergy Clin Immunol. 2000;106(3):546–50.
Bjorkqvist J, de Maat S, Lewandrowski U, Di Gennaro A, Oschatz C, Schong K, et al. Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III. J Clin Invest. 2015;125:3132–46.
Larrauri B, Hester C, Jiang H, Miletic V, Malbran A, Bork K, et al. sgp120 and the contact system in hereditary angioedema: a diagnostic tool in HAE with normal C1 inhibitor. Mol Immunol. 2020;119:27–34.
de Maat S, Bjorkqvist J, Suffritti C, Wiesenekker C, Nagtegaal W, Koekman A, et al. Plasmin is a natural trigger for bradykinin production in hereditary angioedema with factor XII mutation. J Allergy Clin Immunol. 2016;138:1414–23 Highlights a known antibody of plasmin to activate factor XII, but which turns out to be a critical step in activation of the bradykinin cascade when the factor XII is mutated. An important advance in understanding the linkage among the cascades that involve coagulation, fibrinolysis, and bradykinin formation.
Ivanov I, Matafonov A, Sun M, Mohammed B, Cheng Q, Dickeson S, et al. A mechanism for hereditary angioedema with normal C1 inhibitor: an inhibitory regulatory role for the factor XII heavy chain. Blood. 2019;133(10):1152–63.
Bork K, Wulff K, Witzke G, Hardt J. Treatment for hereditary angioedema with normal C1-INH and specific mutations in the F12 gene (HAE-FXII). Allergy. 2017;72(2):320–4.
Dickeson S, Kumar S, Sun M, Mohammed B, Phillips D, Whisstock J, et al. A Mechanism for hereditary angioedema caused by a lysine311 to glutamic acid substitution in plasminogen blood. 2020. https://doi.org/10.1182/blood.2021012945. A new surprising discovery of the mechanism of angioedema when plasminogen is mutated which creates a mutated plasmin whose activity is to directly cleave both low and high molecular weight kininogens, thereby bypassing factor XII and prekallikrein. It is also the first time bradykinin formation from low molecular weight kininogen is linked to any form of angioedema.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
Review cases for adjudication of allergic reactions for Novartis, Genentech, Roche, Astra Zeneca, Sanofi-Aventis, and Abb-RISA. Consultant for BioCryst, Pharvaria, Biomarin, CSL-Behring, Novartis, Celldex, Annexon, and Takeda Pharmin.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Urticaria and Atopic Dermatitis
Rights and permissions
About this article
Cite this article
Kaplan, A.P. Hereditary Angioedema: Diagnosis, Pathogenesis, and Therapy. Curr Treat Options Allergy 9, 118–136 (2022). https://doi.org/10.1007/s40521-022-00308-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40521-022-00308-3