Skip to main content

Advertisement

Log in

How Mechanism Knowledge Can Help to Management of Drug Hypersensitivity

  • Drug Allergy (C Mayorga, Section Editor)
  • Published:
Current Treatment Options in Allergy Aims and scope Submit manuscript

Abstract

Purpose of review

To describe the mechanisms involved in the heterogeneous drug hypersensitivity reactions and how a better understanding of them can help in the correct diagnosis, the improvement of the in vitro diagnostic methods, and the management of the reaction.

Recent findings

We know that drug hypersensitivity reactions are mediated by different mechanisms and until now some drugs have been reported to be able to activate the immune system by a single mechanism while other drugs can be involved in different mechanisms. Moreover, studies show that important clinical aspects such as risk factors, predictability, and cross-reactivity may depend on the drug action mechanism. In this way, recent genetic association studies have shown different human leukocyte antigen (HLA) associations with hypersensitivity reactions depending on the drug and/or the mechanism involved.

Summary

Mechanistically, drug hypersensitivity reactions (DHRs) are classified as allergic and non-allergic reactions. Allergic reactions have been further classified into reactions mediated by IgE, IgG, or IgM; immune complex/complement activation; and T cells. Non allergic reactions can be associated to nonspecific histamine release, bradykinin increase, complement activation, or changes in the metabolism of arachidonic acid. More recently, a classification based on the mode of action of drugs has been proposed, suggesting three mechanisms involved in DHRs: (i) drugs that bind covalently on macromolecules (e.g., proteins) (allergic/immune reaction); (ii) drugs that bind on immune receptors like HLA and T cell receptors (pharmacological interaction, p-i reactions); and (iii) drugs with the ability to stimulate or inhibit receptors or enzymes of inflammatory cells (pseudo-allergy). An extended knowledge on the mechanisms involved in the heterogeneous DHRs can help to understand differences in sensitization patterns, uncommon clinical manifestations, dependence on drug dose, predictability, and cross-reactivity. For that, a better understanding of them can help in the correct diagnosis and the management of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. WHO. International drug monitoring: the role of national centres. Report of a WHO meeting. World Health Organ Tech Rep Ser. 1972;498:25.

    Google Scholar 

  2. Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet. 2000;356(9237):1255–9. https://doi.org/10.1016/S0140-6736(00)02799-9.

    Article  PubMed  CAS  Google Scholar 

  3. Thong BY, Leong KP, Tang CY, Chng HH. Drug allergy in a general hospital: results of a novel prospective inpatient reporting system. Ann Allergy Asthma Immunol. 2003;90(3):342–7. https://doi.org/10.1016/S1081-1206(10)61804-2.

    Article  PubMed  Google Scholar 

  4. Rawlins MD, Thompson JW. Pathogenesis of adverse drug reactions. Oxford: Oxford University Press; 1977.

    Google Scholar 

  5. Davies DM, Ashton CH, Rao JG, Rawlins MD, Routledge PA, Savage RL, et al. Comprehensive clinical drug information service: first year’s experience. Br Med J. 1977;1(6053):89–90. https://doi.org/10.1136/bmj.1.6053.89.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Levine BB. Immunologic mechanisms of penicillin allergy. A haptenic model system for the study of allergic diseases of man. N Engl J Med. 1966;275(20):1115–25. https://doi.org/10.1056/NEJM196611172752009.

    Article  PubMed  CAS  Google Scholar 

  7. Demoly P, Adkinson NF, Brockow K, Castells M, Chiriac AM, Greenberger PA, et al. International consensus on drug allergy. Allergy. 2014;69(4):420–37. https://doi.org/10.1111/all.12350.

    Article  PubMed  CAS  Google Scholar 

  8. • Montanez MI, Mayorga C, Bogas G, Barrionuevo E, Fernandez-Santamaria R, Martin-Serrano A, et al. Epidemiology, mechanisms, and diagnosis of drug-induced anaphylaxis. Front Immunol. 2017;8:614. https://doi.org/10.3389/fimmu.2017.00614 This review focuses on the mechanisms and diagnosis of drug-induced anaphylaxis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Johansson SG, Bieber T, Dahl R, Friedmann PS, Lanier BQ, Lockey RF, et al. Revised nomenclature for allergy for global use: report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol. 2004;113(5):832–6. https://doi.org/10.1016/j.jaci.2003.12.591.

    Article  PubMed  CAS  Google Scholar 

  10. Bircher AJ, Scherer HK. Drug hypersensitivity reactions: inconsistency in the use of the classification of immediate and nonimmediate reactions. J Allergy Clin Immunol. 2012;129(1):263–4; author reply 5-6. https://doi.org/10.1016/j.jaci.2011.08.042.

    Article  PubMed  Google Scholar 

  11. Gell PGH, Coombs RRA. Clinical aspects in immunology. Oxford: Blackwell Scientific Publications; 1968.

    Google Scholar 

  12. Pichler WJ. Delayed drug hypersensitivity reactions. Ann Intern Med. 2003;139(8):683–93. https://doi.org/10.7326/0003-4819-139-8-200310210-00012.

    Article  PubMed  CAS  Google Scholar 

  13. Pichler WJ, Adam J, Watkins S, Wuillemin N, Yun J, Yerly D. Drug hypersensitivity: how drugs stimulate T cells via pharmacological interaction with immune receptors. Int Arch Allergy Immunol. 2015;168(1):13–24. https://doi.org/10.1159/000441280.

    Article  PubMed  CAS  Google Scholar 

  14. •• Pichler WJ, Hausmann O. Classification of Drug Hypersensitivity into Allergic, p-i, and Pseudo-Allergic Forms. Int Arch Allergy Immunol. 2016;171(3–4):166–79. https://doi.org/10.1159/000453265 This review discusses why drug hypersensitivity reactions have to be subclassfied into allergic-immune, pharmacological interactions, and pseudo-allergic reactions.

    Article  PubMed  CAS  Google Scholar 

  15. •• Pichler WJ. Immune pathomechanism and classification of drug hypersensitivity. Allergy. 2019;74(8):1457–71. https://doi.org/10.1111/all.13765This review focused on the classification of drug hypersensitivity reactions based on the action of drugs and the clinical utility.

    Article  PubMed  CAS  Google Scholar 

  16. Naisbitt DJ, Farrell J, Gordon SF, Maggs JL, Burkhart C, Pichler WJ, et al. Covalent binding of the nitroso metabolite of sulfamethoxazole leads to toxicity and major histocompatibility complex-restricted antigen presentation. Mol Pharmacol. 2002;62(3):628–37. https://doi.org/10.1124/mol.62.3.628.

    Article  PubMed  CAS  Google Scholar 

  17. Martin S, Weltzien HU. T cell recognition of haptens, a molecular view. Int Arch Allergy Immunol. 1994;104(1):10–6. https://doi.org/10.1159/000236703.

    Article  PubMed  CAS  Google Scholar 

  18. Weltzien HU, Padovan E. Molecular features of penicillin allergy. J Invest Dermatol. 1998;110(3):203–6. https://doi.org/10.1046/j.1523-1747.1998.00122.x.

    Article  PubMed  CAS  Google Scholar 

  19. Faulkner L, Meng X, Park BK, Naisbitt DJ. The importance of hapten-protein complex formation in the development of drug allergy. Curr Opin Allergy Clin Immunol. 2014;14(4):293–300. https://doi.org/10.1097/ACI.0000000000000078.

    Article  PubMed  CAS  Google Scholar 

  20. Padovan E, Bauer T, Tongio MM, Kalbacher H, Weltzien HU. Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol. 1997;27(6):1303–7. https://doi.org/10.1002/eji.1830270602.

    Article  PubMed  CAS  Google Scholar 

  21. White KD, Chung WH, Hung SI, Mallal S, Phillips EJ. Evolving models of the immunopathogenesis of T cell-mediated drug allergy: the role of host, pathogens, and drug response. J Allergy Clin Immunol. 2015;136(2):219–34; quiz 35. https://doi.org/10.1016/j.jaci.2015.05.050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. •• Meng X, Al-Attar Z, Yaseen FS, Jenkins R, Earnshaw C, Whitaker P, et al. Definition of the nature and hapten threshold of the beta-lactam antigen required for T cell activation in vitro and in patients. J Immunol. 2017;198(11):4217–27. https://doi.org/10.4049/jimmunol.1700209 This paper shows that the levels of piperacillin-human serum albumin adducts are equivalent in hypersensitivity and tolerant patients and it suggests that other factors should be involved in the propensity to develop hypersensitivity.

    Article  PubMed  CAS  Google Scholar 

  23. • Meng X, Yerly D, Naisbitt DJ. Mechanisms leading to T-cell activation in drug hypersensitivity. Curr Opin Allergy Clin Immunol. 2018;18(4):317–24. https://doi.org/10.1097/ACI.0000000000000458 This review highlights the requirement to reach consensus that the formation of drug protein adduct as well as the direct drug binding on immune receptors are relevant for T-cell activation.

    Article  PubMed  CAS  Google Scholar 

  24. Christie G, Kitteringham NR, Park BK. Drug-protein conjugates—XIII. The disposition of the benzylpenicilloyl hapten conjugated to albumin. Biochem Pharmacol. 1987;36(20):3379–85. https://doi.org/10.1016/0006-2952(87)90314-5.

    Article  PubMed  CAS  Google Scholar 

  25. Ariza A, Collado D, Vida Y, Montanez MI, Perez-Inestrosa E, Blanca M, et al. Study of protein haptenation by amoxicillin through the use of a biotinylated antibiotic. PLoS One. 2014;9(3):e90891. https://doi.org/10.1371/journal.pone.0090891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Meng X, Earnshaw CJ, Tailor A, Jenkins RE, Waddington JC, Whitaker P, et al. Amoxicillin and Clavulanate form chemically and immunologically distinct multiple haptenic structures in patients. Chem Res Toxicol. 2016;29(10):1762–72. https://doi.org/10.1021/acs.chemrestox.6b00253.

    Article  PubMed  CAS  Google Scholar 

  27. Torres MJ, Montanez MI, Ariza A, Salas M, Fernandez TD, Barbero N, et al. The role of IgE recognition in allergic reactions to amoxicillin and clavulanic acid. Clin Exp Allergy. 2016;46(2):264–74. https://doi.org/10.1111/cea.12689.

    Article  PubMed  CAS  Google Scholar 

  28. Whitaker P, Meng X, Lavergne SN, El-Ghaiesh S, Monshi M, Earnshaw C, et al. Mass spectrometric characterization of circulating and functional antigens derived from piperacillin in patients with cystic fibrosis. J Immunol. 2011;187(1):200–11. https://doi.org/10.4049/jimmunol.1100647.

    Article  PubMed  CAS  Google Scholar 

  29. El-Ghaiesh S, Monshi MM, Whitaker P, Jenkins R, Meng X, Farrell J, et al. Characterization of the antigen specificity of T-cell clones from piperacillin-hypersensitive patients with cystic fibrosis. J Pharmacol Exp Ther. 2012;341(3):597–610. https://doi.org/10.1124/jpet.111.190900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. ••Yip VLM, Meng X, Maggs JL, Jenkins RE, Marlot PT, Marson AG, et al. Mass spectrometric characterization of circulating covalent protein adducts derived from epoxide metabolites of carbamazepine in patients. Chem Res Toxicol. 2017;30(7):1419–35. https://doi.org/10.1021/acs.chemrestox.7b00063 This paper provides the first chemical evidence for microsomal production of monoxygenated carbamazepine metabolites ([O]CBZ) able to react covalently with proteins.

    Article  CAS  PubMed  Google Scholar 

  31. Monticelli S, De Monte L, Vercelli D. Molecular regulation of IgE switching: let’s walk hand in hand. Allergy. 1998;53(45 Suppl):6–8. https://doi.org/10.1111/j.1398-9995.1998.tb04932.x.

    Article  PubMed  CAS  Google Scholar 

  32. Vercelli D. Immunology of IgE. In: Adkinson NF, Brochner BS, Busse WW, Holgate ST, Lemanske RF, Simons FE, editors. Middleton’s allergy. 7th ed: Elsevier; 2009.

  33. Sutton BJ, Gould HJ. The human IgE network. Nature. 1993;366(6454):421–8. https://doi.org/10.1038/366421a0.

    Article  PubMed  CAS  Google Scholar 

  34. Park BK, Naisbitt DJ, Demoly P. Drug hypersensitivity. Allergy. New York: Elsevier Ltd; 2012. p. 321–330.

    Chapter  Google Scholar 

  35. Schnyder B, Pichler WJ. Mechanisms of drug-induced allergy. Mayo Clin Proc. 2009;84(3):268–72. https://doi.org/10.1016/S0025-6196(11)61145-2.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Simons FE. 9. Anaphylaxis. J Allergy Clin Immunol. 2008;121(2 Suppl):S402–7; quiz S20. https://doi.org/10.1016/j.jaci.2007.08.061.

    Article  CAS  PubMed  Google Scholar 

  37. Williams KW, Sharma HP. Anaphylaxis and urticaria. Immunol Allergy Clin N Am. 2015;35(1):199–219. https://doi.org/10.1016/j.iac.2014.09.010.

    Article  Google Scholar 

  38. Khan BQ, Kemp SF. Pathophysiology of anaphylaxis. Curr Opin Allergy Clin Immunol. 2011;11(4):319–25. https://doi.org/10.1097/ACI.0b013e3283481ab6.

    Article  PubMed  CAS  Google Scholar 

  39. Ono E, Taniguchi M, Mita H, Fukutomi Y, Higashi N, Miyazaki E, et al. Increased production of cysteinyl leukotrienes and prostaglandin D2 during human anaphylaxis. Clin Exp Allergy. 2009;39(1):72–80. https://doi.org/10.1111/j.1365-2222.2008.03104.x.

    Article  PubMed  CAS  Google Scholar 

  40. Blanca M, Romano A, Torres MJ, Fernandez J, Mayorga C, Rodriguez J, et al. Update on the evaluation of hypersensitivity reactions to betalactams. Allergy. 2009;64(2):183–93. https://doi.org/10.1111/j.1398-9995.2008.01916.x.

    Article  PubMed  CAS  Google Scholar 

  41. Sampson HA, Munoz-Furlong A, Campbell RL, Adkinson NF Jr, Bock SA, Branum A, et al. Second symposium on the definition and management of anaphylaxis: summary report—second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium. J Allergy Clin Immunol. 2006;117(2):391–7.

    Article  PubMed  Google Scholar 

  42. • Phillips EJ. New strategies to predict and prevent serious immunologically mediated adverse drug reactions. Trans Am Clin Climatol Assoc. 2018;129:74–87 This paper explains why not all patients with an HLA risk allele will develop an immunologically mediated adverse drug reaction.

    PubMed  PubMed Central  Google Scholar 

  43. Husain Z, Reddy BY, Schwartz RA. DRESS syndrome: part I. Clinical perspectives. J Am Acad Dermatol. 2013;68(5):693 e1–14; quiz 706-8. https://doi.org/10.1016/j.jaad.2013.01.033.

    Article  CAS  Google Scholar 

  44. Roujeau JC. Clinical heterogeneity of drug hypersensitivity. Toxicology. 2005;209(2):123–9. https://doi.org/10.1016/j.tox.2004.12.022.

    Article  PubMed  CAS  Google Scholar 

  45. Roujeau JC, Bioulac-Sage P, Bourseau C, Guillaume JC, Bernard P, Lok C, et al. Acute generalized exanthematous pustulosis. Analysis of 63 cases. Arch Dermatol. 1991;127(9):1333–8.

    Article  CAS  PubMed  Google Scholar 

  46. Britschgi M, Pichler WJ. Acute generalized exanthematous pustulosis, a clue to neutrophil-mediated inflammatory processes orchestrated by T cells. Curr Opin Allergy Clin Immunol. 2002 Aug;2(4):325–31. https://doi.org/10.1097/00130832-200208000-00006.

    Article  PubMed  Google Scholar 

  47. Ju C. Immunological mechanisms of drug-induced liver injury. Curr Opin Drug Discov Devel. 2005;8(1):38–43.

    PubMed  CAS  Google Scholar 

  48. Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov. 2005;4(6):489–99. https://doi.org/10.1038/nrd1750.

    Article  PubMed  CAS  Google Scholar 

  49. Watkins PB, Seeff LB. Drug-induced liver injury: summary of a single topic clinical research conference. Hepatology. 2006;43(3):618–31. https://doi.org/10.1002/hep.21095.

    Article  PubMed  Google Scholar 

  50. El-Ghaiesh S, Sanderson JP, Farrell J, Lavergne SN, Syn WK, Pirmohamed M, et al. Characterization of drug-specific lymphocyte responses in a patient with drug-induced liver injury. J Allergy Clin Immunol. 2011;128(3):680–3. https://doi.org/10.1016/j.jaci.2011.04.031.

    Article  PubMed  Google Scholar 

  51. Tomioka R, King TE Jr. Gold-induced pulmonary disease: clinical features, outcome, and differentiation from rheumatoid lung disease. Am J Respir Crit Care Med. 1997;155(3):1011–20.

    Article  CAS  PubMed  Google Scholar 

  52. Matsuno O. Drug-induced interstitial lung disease: mechanisms and best diagnostic approaches. Respir Res. 2012;13:39. https://doi.org/10.1186/1465-9921-13-39.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Spanou Z, Keller M, Britschgi M, Yawalkar N, Fehr T, Neuweiler J, et al. Involvement of drug-specific T cells in acute drug-induced interstitial nephritis. J Am Soc Nephrol. 2006;17(10):2919–27. https://doi.org/10.1681/ASN.2006050418.

    Article  PubMed  CAS  Google Scholar 

  54. Zanni MP, von Greyerz S, Schnyder B, Brander KA, Frutig K, Hari Y, et al. HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human alpha beta T lymphocytes. J Clin Invest. 1998;102(8):1591–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schmid DA, Depta JP, Pichler WJ. T cell-mediated hypersensitivity to quinolones: mechanisms and cross-reactivity. Clin Exp Allergy. 2006;36(1):59–69. https://doi.org/10.1111/j.1365-2222.2006.02402.x.

    Article  PubMed  CAS  Google Scholar 

  56. Pichler WJ, Beeler A, Keller M, Lerch M, Posadas S, Schmid D, et al. Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol Int. 2006;55(1):17–25. https://doi.org/10.2332/allergolint.55.17.

    Article  PubMed  CAS  Google Scholar 

  57. Wuillemin N, Terracciano L, Beltraminelli H, Schlapbach C, Fontana S, Krahenbuhl S, et al. T cells infiltrate the liver and kill hepatocytes in HLA-B(*)57:01-associated floxacillin-induced liver injury. Am J Pathol. 2014;184(6):1677–82. https://doi.org/10.1016/j.ajpath.2014.02.018.

    Article  PubMed  CAS  Google Scholar 

  58. Yun J, Marcaida MJ, Eriksson KK, Jamin H, Fontana S, Pichler WJ, et al. Oxypurinol directly and immediately activates the drug-specific T cells via the preferential use of HLA-B*58:01. J Immunol. 2014;192(7):2984–93. https://doi.org/10.4049/jimmunol.1302306.

    Article  PubMed  CAS  Google Scholar 

  59. Watkins S, Pichler WJ. Sulfamethoxazole induces a switch mechanism in T cell receptors containing TCRVbeta20-1, altering pHLA recognition. PLoS One. 2013;8(10):e76211. https://doi.org/10.1371/journal.pone.0076211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Illing PT, Vivian JP, Dudek NL, Kostenko L, Chen Z, Bharadwaj M, et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature. 2012;486(7404):554–8. https://doi.org/10.1038/nature11147.

    Article  PubMed  CAS  Google Scholar 

  61. Ostrov DA, Grant BJ, Pompeu YA, Sidney J, Harndahl M, Southwood S, et al. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A. 2012;109(25):9959–64. https://doi.org/10.1073/pnas.1207934109.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Norcross MA, Luo S, Lu L, Boyne MT, Gomarteli M, Rennels AD, et al. Abacavir induces loading of novel self-peptides into HLA-B*57:01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS. 2012;26(11):F21–9. https://doi.org/10.1097/QAD.0b013e328355fe8f.

    Article  PubMed  CAS  Google Scholar 

  63. Yun J, Cai F, Lee FJ, Pichler WJ. T-cell-mediated drug hypersensitivity: immune mechanisms and their clinical relevance. Asia Pac Allergy. 2016;6(2):77–89. https://doi.org/10.5415/apallergy.2016.6.2.77.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wei CY, Chung WH, Huang HW, Chen YT, Hung SI. Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson syndrome. J Allergy Clin Immunol. 2012;129(6):1562–9 e5. https://doi.org/10.1016/j.jaci.2011.12.990.

    Article  PubMed  CAS  Google Scholar 

  65. Schnyder B, Brockow K. Pathogenesis of drug allergy--current concepts and recent insights. Clin Exp Allergy. 2015;45(9):1376–83. https://doi.org/10.1111/cea.12591.

    Article  PubMed  CAS  Google Scholar 

  66. Castrejon JL, Berry N, El-Ghaiesh S, Gerber B, Pichler WJ, Park BK, et al. Stimulation of human T cells with sulfonamides and sulfonamide metabolites. J Allergy Clin Immunol. 2010;125(2):411–8 e4. https://doi.org/10.1016/j.jaci.2009.10.031.

    Article  PubMed  CAS  Google Scholar 

  67. Elsheikh A, Castrejon L, Lavergne SN, Whitaker P, Monshi M, Callan H, et al. Enhanced antigenicity leads to altered immunogenicity in sulfamethoxazole-hypersensitive patients with cystic fibrosis. J Allergy Clin Immunol. 2011;127(6):1543–51 e3. https://doi.org/10.1016/j.jaci.2010.12.1119.

    Article  PubMed  CAS  Google Scholar 

  68. Gerber BO, Pichler WJ. Cellular mechanisms of T cell mediated drug hypersensitivity. Curr Opin Immunol. 2004;16(6):732–7. https://doi.org/10.1016/j.coi.2004.09.016.

    Article  PubMed  CAS  Google Scholar 

  69. Britschgi M, Steiner UC, Schmid S, Depta JP, Senti G, Bircher A, et al. T-cell involvement in drug-induced acute generalized exanthematous pustulosis. J Clin Invest. 2001;107(11):1433–41. https://doi.org/10.1172/JCI12118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wuillemin N, Adam J, Fontana S, Krahenbuhl S, Pichler WJ, Yerly D. HLA haplotype determines hapten or p-i T cell reactivity to flucloxacillin. J Immunol. 2013;190(10):4956–64. https://doi.org/10.4049/jimmunol.1202949.

    Article  PubMed  CAS  Google Scholar 

  71. Yang CW, Hung SI, Juo CG, Lin YP, Fang WH, Lu IH, et al. HLA-B*1502-bound peptides: implications for the pathogenesis of carbamazepine-induced Stevens-Johnson syndrome. J Allergy Clin Immunol. 2007;120(4):870–7. https://doi.org/10.1016/j.jaci.2007.06.017.

    Article  PubMed  CAS  Google Scholar 

  72. Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A. 2005;102(11):4134–9. https://doi.org/10.1073/pnas.0409500102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Mauri-Hellweg D, Bettens F, Mauri D, Brander C, Hunziker T, Pichler WJ. Activation of drug-specific CD4+ and CD8+ T cells in individuals allergic to sulfonamides, phenytoin, and carbamazepine. J Immunol. 1995;155(1):462–72.

    PubMed  CAS  Google Scholar 

  74. Naisbitt DJ, Britschgi M, Wong G, Farrell J, Depta JP, Chadwick DW, et al. Hypersensitivity reactions to carbamazepine: characterization of the specificity, phenotype, and cytokine profile of drug-specific T cell clones. Mol Pharmacol. 2003;63(3):732–41. https://doi.org/10.1124/mol.63.3.732.

    Article  PubMed  CAS  Google Scholar 

  75. Naisbitt DJ, Farrell J, Wong G, Depta JP, Dodd CC, Hopkins JE, et al. Characterization of drug-specific T cells in lamotrigine hypersensitivity. J Allergy Clin Immunol. 2003;111(6):1393–403. https://doi.org/10.1067/mai.2003.1507.

    Article  PubMed  CAS  Google Scholar 

  76. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015 Mar 12;519(7542):237–41. https://doi.org/10.1038/nature14022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schlumberger HD. Pseudo-allergic reactions to drugs and chemicals. Ann Allergy. 1983;51(2 Pt 2):317–24.

    PubMed  CAS  Google Scholar 

  78. Lieberman P, Garvey LH. Mast cells and anaphylaxis. Curr Allergy Asthma Rep. 2016;16(3):20. https://doi.org/10.1007/s11882-016-0598-5.

    Article  PubMed  CAS  Google Scholar 

  79. Subramanian H, Gupta K, Ali H. Roles of MAS-related G protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J Allergy Clin Immunol. 2016;138(3):700–10. https://doi.org/10.1016/j.jaci.2016.04.051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. •• Kowalski ML, Asero R, Bavbek S, Blanca M, Blanca-Lopez N, Bochenek G, et al. Classification and practical approach to the diagnosis and management of hypersensitivity to nonsteroidal anti-inflammatory drugs. Allergy. 2013;68(10):1219–32. https://doi.org/10.1111/all.12260 This paper proposes consistent definitions for the classification of hypersensitivity reactions to NSAIDs.

    Article  PubMed  CAS  Google Scholar 

  81. Choi JH, Kim MA, Park HS. An update on the pathogenesis of the upper airways in aspirin-exacerbated respiratory disease. Curr Opin Allergy Clin Immunol. 2014;14(1):1–6. https://doi.org/10.1097/ACI.0000000000000021.

    Article  PubMed  CAS  Google Scholar 

  82. Arroyo-Mercado F, Khudyakov A, Chawla GS, Cantres-Fonseca O, McFarlane IM. Red man syndrome with oral vancomycin: a case report. Am J Med Case Rep. 2019;7(1):16–7. https://doi.org/10.12691/ajmcr-7-1-5.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fruth K, Pogorzelski B, Schmidtmann I, Springer J, Fennan N, Fraessdorf N, et al. Low-dose aspirin desensitization in individuals with aspirin-exacerbated respiratory disease. Allergy. 2013;68(5):659–65. https://doi.org/10.1111/all.12131.

    Article  PubMed  CAS  Google Scholar 

  84. Fujisawa D, Kashiwakura J, Kita H, Kikukawa Y, Fujitani Y, Sasaki-Sakamoto T, et al. Expression of MAS-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria. J Allergy Clin Immunol. 2014 Sep;134(3):622–33 e9. https://doi.org/10.1016/j.jaci.2014.05.004.

    Article  CAS  PubMed  Google Scholar 

  85. Sanchez-Borges M, Caballero-Fonseca F, Capriles-Hulett A, Gonzalez-Aveledo L. Aspirin-exacerbated cutaneous disease (AECD) is a distinct subphenotype of chronic spontaneous urticaria. J Eur Acad Dermatol Venereol. 2015;29(4):698–701. https://doi.org/10.1111/jdv.12658.

    Article  PubMed  CAS  Google Scholar 

  86. Szczeklik A, Stevenson DD. Aspirin-induced asthma: advances in pathogenesis, diagnosis, and management. J Allergy Clin Immunol. 2003;111(5):913–21; quiz 22. https://doi.org/10.1067/mai.2003.1487.

    Article  CAS  PubMed  Google Scholar 

  87. Morales DR, Guthrie B, Lipworth BJ, Jackson C, Donnan PT, Santiago VH. NSAID-exacerbated respiratory disease: a meta-analysis evaluating prevalence, mean provocative dose of aspirin and increased asthma morbidity. Allergy. 2015;70(7):828–35. https://doi.org/10.1111/all.12629.

    Article  PubMed  CAS  Google Scholar 

  88. Blanca-Lopez N, Ariza A, Dona I, Mayorga C, Montanez MI, Garcia-Campos J, et al. Hypersensitivity reactions to fluoroquinolones: analysis of the factors involved. Clin Exp Allergy. 2013;43(5):560–7. https://doi.org/10.1111/cea.12099.

    Article  PubMed  CAS  Google Scholar 

  89. Khan DA, Solensky R. Drug allergy. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S126–37. https://doi.org/10.1016/j.jaci.2009.10.028.

    Article  PubMed  Google Scholar 

  90. Schnyder B. Approach to the patient with drug allergy. Immunol Allergy Clin N Am. 2009;29(3):405–18. https://doi.org/10.1016/j.iac.2009.04.005.

    Article  Google Scholar 

  91. Brockow K, Przybilla B, Aberer W, Bircher AJ, Brehler R, Dickel H, et al. Guideline for the diagnosis of drug hypersensitivity reactions: S2K-Guideline of the German Society for Allergology and Clinical Immunology (DGAKI) and the German Dermatological Society (DDG) in collaboration with the Association of German Allergologists (AeDA), the German Society for Pediatric Allergology and Environmental Medicine (GPA), the German Contact Dermatitis Research Group (DKG), the Swiss Society for Allergy and Immunology (SGAI), the Austrian Society for Allergology and Immunology (OGAI), the German Academy of Allergology and Environmental Medicine (DAAU), the German Center for Documentation of Severe Skin Reactions and the German Federal Institute for Drugs and Medical Products (BfArM). Allergo J Int. 2015;24(3):94–105. https://doi.org/10.1007/s40629-015-0052-6.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Dona I, Blanca-Lopez N, Torres MJ, Garcia-Campos J, Garcia-Nunez I, Gomez F, et al. Drug hypersensitivity reactions: response patterns, drug involved, and temporal variations in a large series of patients. J Investig Allergol Clin Immunol. 2012;22(5):363–71.

    PubMed  CAS  Google Scholar 

  93. Torres MJ, Blanca M, Fernandez J, Romano A, de Weck A, Aberer W, et al. Diagnosis of immediate allergic reactions to beta-lactam antibiotics. Allergy. 2003;58(10):961–72. https://doi.org/10.1034/j.1398-9995.2003.00280.x.

    Article  PubMed  CAS  Google Scholar 

  94. Atanaskovic-Markovic M, Gaeta F, Gavrovic-Jankulovic M, Velickovic TC, Valluzzi RL, Romano A. Tolerability of imipenem in children with IgE-mediated hypersensitivity to penicillins. J Allergy Clin Immunol. 2009;124(1):167–9. https://doi.org/10.1016/j.jaci.2009.02.031.

    Article  PubMed  CAS  Google Scholar 

  95. Frumin J, Gallagher JC. Allergic cross-sensitivity between penicillin, carbapenem, and monobactam antibiotics: what are the chances? Ann Pharmacother. 2009;43(2):304–15. https://doi.org/10.1345/aph.1L486.

    Article  PubMed  CAS  Google Scholar 

  96. Saxon A, Adelman DC, Patel A, Hajdu R, Calandra GB. Imipenem cross-reactivity with penicillin in humans. J Allergy Clin Immunol. 1988;82(2):213–7. https://doi.org/10.1016/0091-6749(88)91001-9.

    Article  PubMed  CAS  Google Scholar 

  97. Saxon A, Hassner A, Swabb EA, Wheeler B, Adkinson NF Jr. Lack of cross-reactivity between aztreonam, a monobactam antibiotic, and penicillin in penicillin-allergic subjects. J Infect Dis. 1984;149(1):16–22. https://doi.org/10.1093/infdis/149.1.16.

    Article  PubMed  CAS  Google Scholar 

  98. Romano A, Gaeta F, Valluzzi RL, Caruso C, Rumi G, Bousquet PJ. IgE-mediated hypersensitivity to cephalosporins: cross-reactivity and tolerability of penicillins, monobactams, and carbapenems. J Allergy Clin Immunol. 2010;126(5):994–9. https://doi.org/10.1016/j.jaci.2010.06.052.

    Article  CAS  PubMed  Google Scholar 

  99. Romano A, Gaeta F, Valluzzi RL, Caruso C, Rumi G, Bousquet PJ. IgE-mediated hypersensitivity to cephalosporins: cross-reactivity and tolerability of penicillins, monobactams, and carbapenems. J Allergy Clin Immunol. 2010;126(5):994–9. https://doi.org/10.1016/j.jaci.2010.06.052.

    Article  PubMed  CAS  Google Scholar 

  100. Kelkar PS, Li JT. Cephalosporin allergy. N Engl J Med. 2001;345(11):804–9. https://doi.org/10.1056/NEJMra993637.

    Article  PubMed  CAS  Google Scholar 

  101. Romano A, Gaeta F, Valluzzi RL, Maggioletti M, Zaffiro A, Caruso C, et al. IgE-mediated hypersensitivity to cephalosporins: cross-reactivity and tolerability of alternative cephalosporins. J Allergy Clin Immunol. 2015;136(3):685–91 e3. https://doi.org/10.1016/j.jaci.2015.03.012.

    Article  PubMed  CAS  Google Scholar 

  102. • Dona I, Caubet JC, Brockow K, Doyle M, Moreno E, Terreehorst I, et al. An EAACI task force report: recognising the potential of the primary care physician in the diagnosis and management of drug hypersensitivity. Clin Transl Allergy. 2018;8:16. https://doi.org/10.1186/s13601-018-0202-2 This task force remarks how the diagnostic process for drug hypersensitivity reactions often depends on the drug involve and the type of hypersensitivity reaction.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Naisbitt DJ, Yang EL, Alhaidari M, Berry NG, Lawrenson AS, Farrell J, et al. Towards depersonalized abacavir therapy: chemical modification eliminates HLA-B*57:01-restricted CD8+ T-cell activation. AIDS. 2015;29(18):2385–95. https://doi.org/10.1097/QAD.0000000000000867.

    Article  PubMed  CAS  Google Scholar 

  104. Hung SI, Chung WH, Liu ZS, Chen CH, Hsih MS, Hui RC, et al. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics. 2010;11(3):349–56. https://doi.org/10.2217/pgs.09.162.

    Article  PubMed  CAS  Google Scholar 

  105. Szczeklik A. Aspirin-induced asthma: new insights into pathogenesis and clinical presentation of drug intolerance. Int Arch Allergy Appl Immunol. 1989;90(Suppl 1):70–5. https://doi.org/10.1159/000235079.

    Article  PubMed  CAS  Google Scholar 

  106. • Tai YH, Tai YJ, Hsu HC, Lee SP, Chen YY, Chiang YC, et al. Risk factors of hypersensitivity to carboplatin in patients with gynecologic malignancies. Front Pharmacol. 2017;8:800. https://doi.org/10.3389/fphar.2017.00800 This paper suggests different risk factors involved in carboplatin hypersensitivity reactions and how these reactions could be prevented.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. • Castells M. Diagnosis and management of anaphylaxis in precision medicine. J Allergy Clin Immunol. 2017;140(2):321–33. https://doi.org/10.1016/j.jaci.2017.06.012 This paper summarizes how allergists have to provide the management tools to improve the quality of life of patients with anaphylaxis.

    Article  PubMed  Google Scholar 

  108. • Chung SJ, Kang SY, Kang RY, Kim YC, Lee KH, Kim TY, et al. A new non-dilution rapid desensitization protocol successfully applied to all-grade platinum hypersensitivity. Cancer Chemother Pharmacol. 2018;82(5):777–85. https://doi.org/10.1007/s00280-018-3662-0 This paper focuses on the application of a new, safe, and effective desensitization protocol with platinum agents.

    Article  PubMed  CAS  Google Scholar 

  109. •Madrigal-Burgaleta R, Bernal-Rubio L, Berges-Gimeno MP, Carpio-Escalona LV, Gehlhaar P, Alvarez-Cuesta E. A large single-hospital experience using drug provocation testing and rapid drug desensitization in hypersensitivity to antineoplastic and biological agents. J Allergy Clin Immunol Pract. 2019;7(2):618–32. https://doi.org/10.1016/j.jaip.2018.07.031 This paper describes general management procedures and risk factors that have to be considered in platins, taxanes, and biological hypersensitivity reactions.

    Article  PubMed  Google Scholar 

  110. Cernadas JR, Brockow K, Romano A, Aberer W, Torres MJ, Bircher A, et al. General considerations on rapid desensitization for drug hypersensitivity—a consensus statement. Allergy. 2010;65(11):1357–66. https://doi.org/10.1111/j.1398-9995.2010.02441.x.

    Article  PubMed  CAS  Google Scholar 

  111. de Las Vecillas Sanchez L, Alenazy LA, Garcia-Neuer M, Castells MC. Drug hypersensitivity and desensitizations: mechanisms and new approaches. Int J Mol Sci. 2017;18(6). https://doi.org/10.3390/ijms18061316.

    Article  CAS  PubMed Central  Google Scholar 

  112. Perez-Rodriguez E, Martinez-Tadeo JA, Perez-Rodriguez N, Hernandez-Santana G, Callero-Viera A, Rodriguez-Plata E, et al. Outcome of 490 desensitizations to chemotherapy drugs with a rapid one-solution protocol. J Allergy Clin Immunol Pract. 2018;6(5):1621–7 e6. https://doi.org/10.1016/j.jaip.2017.11.033.

    Article  PubMed  Google Scholar 

  113. Lopez-Gonzalez P, Madrigal-Burgaleta R, Carpio-Escalona LV, Bernal-Rubio L, Guerra E, Berges-Gimeno MP, et al. Assessment of antihistamines and corticosteroids as premedication in rapid drug desensitization to paclitaxel: outcomes in 155 procedures. J Allergy Clin Immunol Pract. 2018;6(4):1356–62. https://doi.org/10.1016/j.jaip.2017.11.013.

    Article  PubMed  Google Scholar 

  114. Santos RB, Galvao VR. Monoclonal antibodies hypersensitivity: prevalence and management. Immunol Allergy Clin N Am. 2017;37(4):695–711. https://doi.org/10.1016/j.iac.2017.07.003.

    Article  Google Scholar 

  115. Gan H, Wang L, Fu W, Zhang J, Yu M, Liu G. Rapid subcutaneous desensitization for the management of delayed hypersensitivity reactions to omalizumab. A case report. J Clin Pharm Ther. 2019;44(3):486–8. https://doi.org/10.1111/jcpt.12827.

    Article  PubMed  Google Scholar 

  116. Kuyucu S, Caubet JC. Hypersensitivity reactions to antiepileptic drugs in children: epidemiologic, pathogenetic, clinical, and diagnostic aspects. J Allergy Clin Immunol Pract 2018;6(6):1879–1891 e1. https://doi.org/10.1016/j.jaip.2018.07.003.

    PubMed  Google Scholar 

  117. Siripassorn K, Ruxrungtham K, Manosuthi W. Successful drug desensitization in patients with delayed-type allergic reactions to anti-tuberculosis drugs. Int J Infect Dis. 2018;68:61–8. https://doi.org/10.1016/j.ijid.2018.01.006.

    Article  PubMed  CAS  Google Scholar 

  118. Dilley MA, Lee JP, Broyles AD. Methotrexate hypersensitivity reactions in pediatrics: evaluation and management. Pediatr Blood Cancer. 2017;64(5). https://doi.org/10.1002/pbc.26306.

    Article  Google Scholar 

  119. Shah SR, Millan T, Alamzaib SM, Luu SW. Desensitization therapy using ‘Mariana Castells’ protocol in a patient with multiple autoimmune disorders—does it work? J Community Hosp Intern Med Perspect. 2019;9(1):53–4. https://doi.org/10.1080/20009666.2018.1528107.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rial Prado MJ, Rico Diaz MA, Cosgaya Ceballos A, Cuesta HJ. A new rush schedule for cotrimoxazole desensitization: a report of 2 cases. J Investig Allergol Clin Immunol. 2018;28(4):267–9. https://doi.org/10.18176/jiaci.0256.

    Article  PubMed  CAS  Google Scholar 

  121. • Cortellini G, Romano A, Santucci A, Barbaud A, Bavbek S, Bignardi D, et al. Clinical approach on challenge and desensitization procedures with aspirin in patients with ischemic heart disease and nonsteroidal anti-inflammatory drug hypersensitivity. Allergy. 2017;72(3):498–506. https://doi.org/10.1111/all.13068 This paper focuses in the establishment of clinical criteria in the choice of challenge and/or desensitization in patients with hypersensitivity to acetylsalicylic acid.

    Article  PubMed  CAS  Google Scholar 

  122. Heath JL, Heath RD, Tamboli C, Johnson L, Wilson AS, Chervinskiy S, et al. Mesalamine desensitization in a patient with treatment refractory ulcerative colitis and aspirin and nonsteroidal anti-inflammatory drug hypersensitivity. Ann Allergy Asthma Immunol. 2017;118(4):518–20. https://doi.org/10.1016/j.anai.2017.01.026.

    Article  PubMed  Google Scholar 

  123. •• Kidon M, Blanca-Lopez N, Gomes E, Terreehorst I, Tanno L, Ponvert C, et al. EAACI/ENDA Position Paper: diagnosis and management of hypersensitivity reactions to non-steroidal anti-inflammatory drugs (NSAIDs) in children and adolescents. Pediatr Allergy Immunol. 2018;29(5):469–80. https://doi.org/10.1111/pai.12915 This position paper summarizes diagnostic and management guidelines for children with non-steroidal anti-inflammtory drugs.

    Article  PubMed  Google Scholar 

  124. Rosa JS, Vuong VB, Haskin O, Liu AY. A novel outpatient desensitization protocol for recombinant human erythropoietin allergy in a pediatric patient. Allergy, Asthma Clin Immunol. 2018;14:8. https://doi.org/10.1186/s13223-018-0233-1.

    Article  CAS  Google Scholar 

  125. Bahloul N, Ben Mahmoud L, Ghozzi H, Hadjkacem F, Zeghal K, Abid M, et al. Hypersensitivity to levothyroxine: a case report of a successful oral desensitization. Therapie. 2018;73(4):349–50. https://doi.org/10.1016/j.therap.2017.10.009.

    Article  PubMed  Google Scholar 

  126. Castells Guitart MC. Rapid drug desensitization for hypersensitivity reactions to chemotherapy and monoclonal antibodies in the 21st century. J Investig Allergol Clin Immunol. 2014;24(2):72–9 quiz 2 p following 9.

    PubMed  CAS  Google Scholar 

  127. Kim S, Choi IS, Kim YJ, Kim CS, Han ER, Park DJ, et al. Airway responsiveness to inhaled aspirin is influenced by airway hyperresponsiveness in asthmatic patients. Korean J Intern Med. 2010;25(3):309–16. https://doi.org/10.3904/kjim.2010.25.3.309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Fajt ML, Petrov AA. Outpatient aspirin desensitization for patients with aspirin hypersensitivity and cardiac disease. Crit Pathw Cardiol. 2011;10(1):17–21. https://doi.org/10.1097/HPC.0b013e318213d5a6.

    Article  PubMed  Google Scholar 

  129. Chen P, Lin JJ, Lu CS, Ong CT, Hsieh PF, Yang CC, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med. 2011;364(12):1126–33. https://doi.org/10.1056/NEJMoa1009717.

    Article  PubMed  CAS  Google Scholar 

  130. Pavlos R, Mallal S, Ostrov D, Buus S, Metushi I, Peters B, et al. T cell-mediated hypersensitivity reactions to drugs. Annu Rev Med. 2015;66:439–54. https://doi.org/10.1146/annurev-med-050913-022745.

    Article  PubMed  CAS  Google Scholar 

  131. Gueant JL, Romano A, Cornejo-Garcia JA, Oussalah A, Chery C, Blanca-Lopez N, et al. HLA-DRA variants predict penicillin allergy in genome-wide fine-mapping genotyping. J Allergy Clin Immunol. 2015;135(1):253–9. https://doi.org/10.1016/j.jaci.2014.07.047.

    Article  PubMed  CAS  Google Scholar 

  132. Wei CY, Lee MT, Chen YT. Pharmacogenomics of adverse drug reactions: implementing personalized medicine. Hum Mol Genet. 2012;21(R1):R58–65. https://doi.org/10.1093/hmg/dds341.

    Article  PubMed  CAS  Google Scholar 

  133. Cornejo-Garcia JA, Romano A, Gueant-Rodriguez RM, Oussalah A, Blanca-Lopez N, Gaeta F, et al. A non-synonymous polymorphism in galectin-3 lectin domain is associated with allergic reactions to beta-lactam antibiotics. Pharm J. 2016;16(1):79–82. https://doi.org/10.1038/tpj.2015.24.

    Article  CAS  Google Scholar 

  134. Kowalski ML, Woszczek G, Bienkiewicz B, Mis M. Association of pyrazolone drug hypersensitivity with HLA-DQ and DR antigens. Clin Exp Allergy. 1998;28(9):1153–8. https://doi.org/10.1046/j.1365-2222.1998.00346.x.

    Article  PubMed  CAS  Google Scholar 

  135. Garcia-Martin E, Esguevillas G, Blanca-Lopez N, Garcia-Menaya J, Blanca M, Amo G, et al. Genetic determinants of metamizole metabolism modify the risk of developing anaphylaxis. Pharmacogenet Genomics. 2015;25(9):462–4. https://doi.org/10.1097/FPC.0000000000000157.

    Article  PubMed  CAS  Google Scholar 

  136. • Perkins JR, Acosta-Herrera M, Plaza-Seron MC, Jurado-Escobar R, Dona I, Garcia-Martin E, et al. Polymorphisms in CEP68 gene associated with risk of immediate selective reactions to non-steroidal anti-inflammatory drugs. Pharm J. 2019;19(2):191–9. https://doi.org/10.1038/s41397-018-0038-0 This paper focuses on the potential use of CEP68 gene as biomarker of clinical utility in drug hypersensitivity reactions.

    Article  CAS  Google Scholar 

  137. Yang CY, Chen CH, Deng ST, Huang CS, Lin YJ, Chen YJ, et al. Allopurinol use and risk of fatal hypersensitivity reactions: a nationwide population-based study in Taiwan. JAMA Intern Med. 2015 Sep;175(9):1550–7. https://doi.org/10.1001/jamainternmed.2015.3536.

    Article  PubMed  Google Scholar 

  138. Chung WH, Chang WC, Lee YS, Wu YY, Yang CH, Ho HC, et al. Genetic variants associated with phenytoin-related severe cutaneous adverse reactions. JAMA. 2014;312(5):525–34. https://doi.org/10.1001/jama.2014.7859.

    Article  PubMed  Google Scholar 

  139. Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J, et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med. 2008;358(6):568–79. https://doi.org/10.1056/NEJMoa0706135.

    Article  PubMed  Google Scholar 

  140. Karlin E, Phillips E. Genotyping for severe drug hypersensitivity. Curr Allergy Asthma Rep. 2014;14(3):418. https://doi.org/10.1007/s11882-013-0418-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486. https://doi.org/10.1038/428486a.

    Article  PubMed  CAS  Google Scholar 

  142. Man CB, Kwan P, Baum L, Yu E, Lau KM, Cheng AS, et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia. 2007 May;48(5):1015–8. https://doi.org/10.1111/j.1528-1167.2007.01022.x.

    Article  CAS  PubMed  Google Scholar 

  143. Chang CC, Too CL, Murad S, Hussein SH. Association of HLA-B*1502 allele with carbamazepine-induced toxic epidermal necrolysis and Stevens-Johnson syndrome in the multi-ethnic Malaysian population. Int J Dermatol. 2011 Feb;50(2):221–4. https://doi.org/10.1111/j.1365-4632.2010.04745.x.

    Article  PubMed  Google Scholar 

  144. Locharernkul C, Loplumlert J, Limotai C, Korkij W, Desudchit T, Tongkobpetch S, et al. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population. Epilepsia. 2008;49(12):2087–91. https://doi.org/10.1111/j.1528-1167.2008.01719.x.

    Article  PubMed  Google Scholar 

  145. McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperaviciute D, Carrington M, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364(12):1134–43. https://doi.org/10.1056/NEJMoa1013297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Ozeki T, Mushiroda T, Yowang A, Takahashi A, Kubo M, Shirakata Y, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet. 2011;20(5):1034–41. https://doi.org/10.1093/hmg/ddq537.

    Article  PubMed  CAS  Google Scholar 

  147. Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M, Kurose K, et al. HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics. 2008;9(11):1617–22. https://doi.org/10.2217/14622416.9.11.1617.

    Article  PubMed  CAS  Google Scholar 

  148. Tassaneeyakul W, Jantararoungtong T, Chen P, Lin PY, Tiamkao S, Khunarkornsiri U, et al. Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics. 2009;19(9):704–9. https://doi.org/10.1097/FPC.0b013e328330a3b8.

    Article  PubMed  CAS  Google Scholar 

  149. Lonjou C, Borot N, Sekula P, Ledger N, Thomas L, Halevy S, et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics. 2008;18(2):99–107. https://doi.org/10.1097/FPC.0b013e3282f3ef9c.

    Article  PubMed  CAS  Google Scholar 

  150. Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M, Kurose K, et al. HLA-B*1511 is a risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia. 2010;51(12):2461–5. https://doi.org/10.1111/j.1528-1167.2010.02766.x.

    Article  PubMed  CAS  Google Scholar 

  151. Hung SI, Chung WH, Jee SH, Chen WC, Chang YT, Lee WR, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics. 2006;16(4):297–306. https://doi.org/10.1097/01.fpc.0000199500.46842.4a.

    Article  PubMed  CAS  Google Scholar 

  152. Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359(9308):727–32. https://doi.org/10.1016/s0140-6736(02)07873-x.

    Article  PubMed  CAS  Google Scholar 

  153. Clare KE, Miller MH, Dillon JF. Genetic factors influencing drug-induced liver injury: do they have a role in prevention and diagnosis? Curr Hepatol Rep. 2017;16(3):258–64. https://doi.org/10.1007/s11901-017-0363-9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ariza PhD.

Ethics declarations

Conflict of interest

Adriana Ariza Veguillas declares that she has no conflict of interest. Tahia Diana Fernández-Duarte declares that she has no conflict of interest. Gador Bogas Herrera declares that she has no conflict of interest. María José Torres Jaén declares that she has no conflict of interest. Cristobalina Mayorga declares that she has no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Drug Allergy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariza, A., Fernández, T., Bogas, G. et al. How Mechanism Knowledge Can Help to Management of Drug Hypersensitivity. Curr Treat Options Allergy 7, 14–31 (2020). https://doi.org/10.1007/s40521-020-00244-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40521-020-00244-0

Keywords

Navigation