Skip to main content

Advertisement

Log in

Association between serum soluble α-klotho and bone mineral density (BMD) in middle-aged and older adults in the United States: a population-based cross-sectional study

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Osteoporosis is a degenerative disease defined by low bone mineral density, has a high prevalence, and causes fractures at multiple sites throughout the body, greatly affecting the quality of patients. α-Klotho is an endocrine factor involved in the regulation of various metabolic processes in humans, and its role in bone metabolism has attracted widespread attention. The relationship between α-klotho and bone mineral density has not been uniformly recognized, and no large-scale correlation analysis has been conducted in the middle-aged and elderly population.

Objective

To determine the relationship between α-klotho and bone mineral density in middle-aged and elderly people.

Methods

Population data of 3120 individuals aged 40–79 years were obtained from the NHANES database for the period 2011–2016. Regression analysis was performed using a general linear model with serum α-klotho as the independent variable and total bone mineral density, thoracic bone mineral density, lumbar bone mineral density, pelvic bone mineral density, and trunk bone mineral density as the dependent variables, respectively. The generalized additive model was also used for smoothing curve fitting and threshold effect analysis.

Results

Serum α-klotho was positively correlated with total bone mineral density at lg (Klotho) < 2.97 and with thoracic bone mineral density at lg (Klotho) > 2.69 (β = 0.05, p = 0.0006), and negatively correlated (β = −0.27, p = 0.0341) with lumbar bone mineral density at lg (Klotho) < 2.69. It also positively correlated with trunk bone mineral density (β = 0.027, p = 0.03657) and had no segmental effect but did not correlate with pelvic bone mineral density. The positive association of serum α-klotho with those aged 40–49 years, female, non-Hispanic White, and without hypertension was clearer. In the population with diabetes, a significantly positive association between total (β = 0.15, p = 0.01), thoracic (β = 0.23, p = 0.0404), and lumbar (β = 0.22, p = 0.0424) bone mineral density and α-klotho was observed.

Conclusions

α-Klotho has different relationships with total, thoracic, lumbar, and trunk bone mineral density. Among them, the positive correlation between α-klotho and trunk bone mineral density is more valuable for predicting osteoporosis. The significant effect of α-klotho on bone mineral density in diabetes patients suggests its potential as a predictive marker of diabetes progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Publicly available datasets were analyzed in this study. These data can be found here: https://www.cdc.gov/nchs/nhanes/.

References

  1. Klibanski A, Adams-Campbell L, Bassford T et al (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA J am Med Assoc 285:785–795

    Article  Google Scholar 

  2. Gargiulo P, Helgason T, Ramon C et al (2014) CT and MRI assessment and characterization using segmentation and 3D modeling techniques: applications to muscle, bone and brain. Eur J Transl Myol 24:3298. https://doi.org/10.4081/ejtm.2014.3298

    Article  PubMed  PubMed Central  Google Scholar 

  3. Recenti M, Ricciardi C, Edmunds K et al (2020) Machine learning predictive system based upon radiodensitometric distributions from mid-thigh CT images. Eur J Transl Myol 30:8892. https://doi.org/10.4081/ejtm.2019.8892

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ciliberti FK, Cesarelli G, Guerrini L et al (2022) The role of bone mineral density and cartilage volume to predict knee cartilage degeneration. Eur J Transl Myol 32:10678. https://doi.org/10.4081/ejtm.2022.10678

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kanis JA, McCloskey EV, Johansson H et al (2008) A reference standard for the description of osteoporosis. Bone 42:467–475. https://doi.org/10.1016/j.bone.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  6. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936. https://doi.org/10.1016/s0140-6736(02)08761-5

    Article  PubMed  Google Scholar 

  7. Ensrud KE, Kats AM, Boyd CM et al (2019) Association of disease definition, comorbidity burden, and prognosis with hip fracture probability among late-life women. JAMA Intern Med 179:1095–1103. https://doi.org/10.1001/jamainternmed.2019.0682

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stanghelle B, Bentzen H, Giangregorio L et al (2019) Associations between health-related quality of life, physical function and pain in older women with osteoporosis and vertebral fracture. BMC Geriatr 19:298. https://doi.org/10.1186/s12877-019-1268-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nawrat-Szoltysik A, Miodonska Z, Piejko L et al (2021) Assessment of quality of life and pain severity in older men with osteoporosis: cross-sectional study. Int J Env Res Pub He 18:11276. https://doi.org/10.3390/ijerph182111276

    Article  Google Scholar 

  10. Frost M, Wraae K, Abrahamsen B et al (2012) Osteoporosis and vertebral fractures in men aged 60–74 years. Age Ageing 41:171–177. https://doi.org/10.1093/ageing/afr170

    Article  PubMed  Google Scholar 

  11. Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51. https://doi.org/10.1038/36285

    Article  CAS  PubMed  Google Scholar 

  12. Olauson H, Mencke R, Hillebrands J-L et al (2017) Tissue expression and source of circulating alpha tKlotho. Bone 100:19–35. https://doi.org/10.1016/j.bone.2017.03.043

    Article  CAS  PubMed  Google Scholar 

  13. Lindberg K, Amin R, Moe OW et al (2014) The kidney is the principal organ mediating klotho effects. J Am Soc Nephrol 25:2169–2175. https://doi.org/10.1681/asn.2013111209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu Y, Sun Z (2015) Molecular basis of Klotho: from gene to function in aging. Endocr Rev 36:174–193. https://doi.org/10.1210/er.2013-1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ohsawa Y, Ohtsubo H, Munekane A et al (2023) Circulating α-klotho counteracts transforming growth factor-β-induced sarcopenia. Am J Pathol. https://doi.org/10.1016/j.ajpath.2023.01.009

    Article  PubMed  Google Scholar 

  16. Nakao VW, Mazucanti CHY, de Sá LL et al (2022) Neuroprotective action of α-Klotho against LPS-activated glia conditioned medium in primary neuronal culture. Sci Rep 12:18884. https://doi.org/10.1038/s41598-022-21132-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Komaba H, Kaludjerovic J, Hu DZ et al (2017) Klotho expression in osteocytes regulates bone metabolism and controls bone formation. Kidney Int 92:599–611. https://doi.org/10.1016/j.kint.2017.02.014

    Article  CAS  PubMed  Google Scholar 

  18. Hamdy M, Shaheen I, Seif El Din H et al (2022) Klotho level as a marker of low bone mineral density in Egyptian sickle cell disease patients. J Pediatr Hematol Oncol 44:e40–e45. https://doi.org/10.1097/mph.0000000000002231

    Article  CAS  PubMed  Google Scholar 

  19. Zheng S, Chen Y, Zheng Y et al (2018) Correlation of serum levels of fibroblast growth factor 23 and klotho protein levels with bone mineral density in maintenance hemodialysis patients. Eur J Med Res 23:18. https://doi.org/10.1186/s40001-018-0315-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matei A, Bilha SC, Constantinescu D et al (2022) Body composition, adipokines, FGF23-klotho and bone in kidney transplantation: is there a link? J Nephrol 35:293–304. https://doi.org/10.1007/s40620-021-00972-9

    Article  CAS  PubMed  Google Scholar 

  21. Amaro-Gahete FJ, De-la OA, Jurado-Fasoli L et al (2019) Body composition and S-klotho plasma levels in middle-aged adults: a cross-sectional study. Rejuvenat Res 22:478–483. https://doi.org/10.1089/rej.2018.2092

    Article  CAS  Google Scholar 

  22. Chen TC, Clark J, Riddles MK et al (2020) National Health and Nutrition Examination Survey, 2015–2018: Sample Design and Estimation Procedures. Vital Health Stat 2:1–35

    Google Scholar 

  23. Alaimo K, Briefel RR, Frongillo EA Jr et al (1998) Food insufficiency exists in the United States: results from the third National Health and Nutrition Examination Survey (NHANES III). Am J Public Health 88:419–426. https://doi.org/10.2105/ajph.88.3.419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sjostrom M, Ainsworth BE, Bauman A et al (2005) Guidelines for data processing analysis of the International Physical Activity Questionnaire (IPAQ)—short and long forms

  25. Flegal KM, Kruszon-Moran D, Carroll MD et al (2016) Trends in obesity among adults in the United States, 2005 to 2014. JAMA 315:2284–2291. https://doi.org/10.1001/jama.2016.6458

    Article  CAS  PubMed  Google Scholar 

  26. Chen M, Yang Y, Baral K et al (2023) Relationship between bisphenol A and the cardiovascular disease metabolic risk factors in American adults: a population-based study. Chemosphere 324: 138289. https://doi.org/10.1016/j.chemosphere.2023.138289

  27. Kim D, Lee S, Choi JY et al (2022) Association of α-klotho and lead and cadmium: a cross-sectional study. Sci Total Environ 843: 156938. https://doi.org/10.1016/j.scitotenv.2022.156938

  28. Pedersen L, Pedersen SM, Brasen CL et al (2013) Soluble serum klotho levels in healthy subjects. Comparison of two different immunoassays. Clin Biochem 46:1079–1083. https://doi.org/10.1016/j.clinbiochem.2013.05.046

    Article  CAS  PubMed  Google Scholar 

  29. Kurosu H, Ogawa Y, Miyoshi M et al (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123. https://doi.org/10.1074/jbc.C500457200

    Article  CAS  PubMed  Google Scholar 

  30. Goetz R, Nakada Y, Hu MC et al (2010) Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23–FGFR–klotho complex formation. Proc Natl Acad Sci USA 107:407–412. https://doi.org/10.1073/pnas.0902006107

    Article  PubMed  Google Scholar 

  31. Urakawa I, Yamazaki Y, Shimada T et al (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774. https://doi.org/10.1038/nature05315

    Article  CAS  PubMed  Google Scholar 

  32. Andrukhova O, Smorodchenko A, Egerbacher M et al (2014) FGF23 promotes renal calcium reabsorption through the TRPV5 channel. Embo J 33:229–246. https://doi.org/10.1002/embj.201284188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu D, Mackenzie NC, Millan JL et al (2013) A protective role for FGF-23 in local defence against disrupted arterial wall integrity? Mol Cell Endocrinol 372:1–11. https://doi.org/10.1016/j.mce.2013.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu MC, Shi M, Zhang J et al (2011) Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 22:124–136. https://doi.org/10.1681/ASN.2009121311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ribeiro AL, Mendes F, Carias E et al (2020) FGF23-klotho axis as predictive factors of fractures in type 2 diabetics with early chronic kidney disease. J Diabetes Complicat 34: 107476. https://doi.org/10.1016/j.jdiacomp.2019.107476

  36. Kawano K, Ogata N, Chiano M et al (2002) Klotho gene polymorphisms associated with bone density of aged postmenopausal women. J Bone Miner Res 17:1744–1751. https://doi.org/10.1359/jbmr.2002.17.10.1744

    Article  CAS  PubMed  Google Scholar 

  37. Mullin BH, Wilson SG, Islam FM et al (2005) Klotho gene polymorphisms are associated with osteocalcin levels but not bone density of aged postmenopausal women. Calcif Tissue Int 77:145–151. https://doi.org/10.1007/s00223-004-0291-x

    Article  CAS  PubMed  Google Scholar 

  38. Yuan Q, Sato T, Densmore M et al (2012) Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho−/− mice. PLoS Genet 8: e1002726. https://doi.org/10.1371/journal.pgen.1002726

  39. Neyra JA, Hu MC (2016) αKlotho and chronic kidney disease. Vitam Horm 101:257–310. https://doi.org/10.1016/bs.vh.2016.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Razzaque MS (2012) FGF23, klotho and vitamin D interactions: what have we learned from in vivo mouse genetics studies? Adv Exp Med Biol 728:84–91. https://doi.org/10.1007/978-1-4614-0887-1_5

    Article  CAS  PubMed  Google Scholar 

  41. Wolf I, Stein D, Shahmoon S et al (2016) Alteration in serum klotho levels in anorexia nervosa patients. Clin Nutr 35:958–962. https://doi.org/10.1016/j.clnu.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  42. Marchelek-Myśliwiec M, Dziedziejko V, Nowosiad-Magda M et al (2019) Bone metabolism parameters in hemodialysis patients with chronic kidney disease and in patients after kidney transplantation. Physiol Res 68: 947–954. https://doi.org/10.33549/physiolres.934118

  43. Wang K, Mao Y, Lu M et al (2022) Association between serum klotho levels and the prevalence of diabetes among adults in the United States. Front Endocrinol (Lausanne) 13:1005553. https://doi.org/10.3389/fendo.2022.1005553

    Article  PubMed  Google Scholar 

  44. Devaraj S, Syed B, Chien A et al (2012) Validation of an immunoassay for soluble klotho protein decreased levels in diabetes and increased levels in chronic kidney disease. Am J Clin Pathol 137:479–485. https://doi.org/10.1309/AJCPGPMAF7SFRBO4

    Article  CAS  PubMed  Google Scholar 

  45. Nie F, Wu DM, Du HF et al (2017) Serum klotho protein levels and their correlations with the progression of type 2 diabetes mellitus. J Diabetes Complicat 31:594–598. https://doi.org/10.1016/j.jdiacomp.2016.11.008

    Article  Google Scholar 

  46. Hu MC, Shi M, Zhang J et al (2016) Renal production, uptake, and handling of circulating αklotho. J Am Soc Nephrol 27:79–90. https://doi.org/10.1681/asn.2014101030

    Article  CAS  PubMed  Google Scholar 

  47. Kurra S, Siris E (2011) Diabetes and bone health: the relationship between diabetes and osteoporosis-associated fractures. Diabetes Metab Res Rev 27:430–435. https://doi.org/10.1002/dmrr.1197

    Article  PubMed  Google Scholar 

  48. Leidig-Bruckner G, Grobholz S, Bruckner T et al (2014) Prevalence and determinants of osteoporosis in patients with type 1 and type 2 diabetes mellitus. BMC Endocr Disord 14:33. https://doi.org/10.1186/1472-6823-14-33

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all of the participants, coordinators, and administrators for their support and help during the research.

Funding

This study was supported by the National Natural Science Foundation of China (82270795, 81700658), the Hunan Provincial Natural Science Foundation (2020JJ3058) and the Wisdom Accumulation and Talent Cultivation Project of the Third Xiangya Hospital of Central South University (YX202212).

Author information

Authors and Affiliations

Authors

Contributions

Yang Zhang: conceptualization, methodology, formal analysis, investigation, data curation, writing—review and editing, visualization. Changtai Zhao: conceptualization, methodology, formal analysis, data curation, visualization, writing—original draft. Hanyong Zhang: conceptualization, formal analysis, investigation, supervision, writing—review and editing. Mongcong Chen: conceptualization, formal analysis, investigation, writing—review and editing. Yang Meng: conceptualization, data curation, formal analysis, investigation, methodology. Yuxin Pan: conceptualization, data curation, formal analysis, visualization, writing—review and editing. Quan Zhuang: conceptualization, methodology, funding acquisition, formal analysis, project administration, writing—review and editing, supervision. Mingyi Zhao: conceptualization, methodology, funding acquisition, project administration, writing—review and editing, supervision.

Corresponding authors

Correspondence to Quan Zhuang or Mingyi Zhao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this study.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the National Center for Health Statistics (NCHS) Research Ethics Review Board.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, C., Zhang, H. et al. Association between serum soluble α-klotho and bone mineral density (BMD) in middle-aged and older adults in the United States: a population-based cross-sectional study. Aging Clin Exp Res 35, 2039–2049 (2023). https://doi.org/10.1007/s40520-023-02483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-023-02483-y

Keywords

Navigation