Skip to main content

Advertisement

Log in

Dietary inflammatory potential and biological aging among US adults: a population-based study

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Objectives

The rate of biological aging is influenced by various factors such as genetics, environment, and diet. The dietary inflammatory index (DII) is strongly associated with various chronic diseases. The aim of this study was to investigate the association between DII and biological aging in US adults using quantitative indicators.

Methods

Based on data from the National Health and Nutrition Examination Survey (NHANES) 1999–2018, weighted multiple linear regression models, generalized weighted models, and smoothed fitted curves were used to investigate the linear and nonlinear relationships of DII with four biological markers of aging (biological age, phenotypic age, telomere length, and serum klotho concentration).

Results

A total of 35,575 adult participants with complete data were included in the study. After adjusting for all confounders, significant positive correlations were found between DII with biological age [0.070 (0.045, 0.095)] and phenotypic age [0.421 (0.371, 0.471)], with an increase of 0.07 and 0.42 years in biological age and phenotypic age, respectively, for each increase in DII score. The negative correlations between DII with telomere length [ – 0.005 ( – 0.008, – 0.002)] and klotho [ – 3.874 ( – 7.409, – 0.338)] were significant only in partially adjusted models and differed across subgroups.

Conclusions

In the current study, higher DII scores (greater pro-inflammatory dietary potential) were associated with biological aging. These findings may contribute to the development of aging prevention strategies through dietary interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The survey data are publicly available on the internet for data users and researchers throughout the world ( www.cdc.gov/nchs/nhanes/).

References

  1. Partridge L, Deelen J, Slagboom PE (2018) Facing up to the global challenges of ageing. Nature 561:45–56. https://doi.org/10.1038/s41586-018-0457-8

    Article  CAS  PubMed  Google Scholar 

  2. Costantino S, Paneni F, Cosentino F (2016) Ageing, metabolism and cardiovascular disease. J Physiol 594:2061–2073. https://doi.org/10.1113/jp270538

    Article  CAS  PubMed  Google Scholar 

  3. Liu Z, Kuo PL, Horvath S et al (2018) A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: a cohort study. PLoS Med 15:e1002718. https://doi.org/10.1371/journal.pmed.1002718

    Article  PubMed  PubMed Central  Google Scholar 

  4. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115. https://doi.org/10.1186/gb-2013-14-10-r115

    Article  PubMed  PubMed Central  Google Scholar 

  5. Benetos A, Okuda K, Lajemi M et al (2001) Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 37:381–385. https://doi.org/10.1161/01.hyp.37.2.381

    Article  CAS  PubMed  Google Scholar 

  6. Abraham CR, Li A (2022) Aging-suppressor klotho: prospects in diagnostics and therapeutics. Ageing Res Rev 82:101766. https://doi.org/10.1016/j.arr.2022.101766

    Article  CAS  PubMed  Google Scholar 

  7. Levine ME (2013) Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol A Biol Sci Med Sci 68:667–674. https://doi.org/10.1093/gerona/gls233

    Article  PubMed  Google Scholar 

  8. Charisis S, Ntanasi E, Yannakoulia M et al (2021) Diet Inflammatory index and dementia incidence: a population-based study. Neurology 97:e2381–e2391. https://doi.org/10.1212/wnl.0000000000012973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liberale L, Badimon L, Montecucco F et al (2022) Inflammation, aging, and cardiovascular disease: jacc review topic of the week. J Am Coll Cardiol 79:837–847. https://doi.org/10.1016/j.jacc.2021.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guerrero A, De Strooper B, Arancibia-Cárcamo IL (2021) Cellular senescence at the crossroads of inflammation and Alzheimer’s disease. Trends Neurosci 44:714–727. https://doi.org/10.1016/j.tins.2021.06.007

    Article  CAS  PubMed  Google Scholar 

  11. Claesson MJ, Jeffery IB, Conde S et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184. https://doi.org/10.1038/nature11319

    Article  CAS  PubMed  Google Scholar 

  12. Yeh TS, Yuan C, Ascherio A et al (2021) Long-term dietary flavonoid intake and subjective cognitive decline in US men and women. Neurology 97:e1041–e1056. https://doi.org/10.1212/wnl.0000000000012454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moslehi N, Golzarand M, Hosseinpanah F et al (2020) Dietary intakes of flavonoids and carotenoids and the risk of developing an unhealthy metabolic phenotype. Food Funct 11:3451–3458. https://doi.org/10.1039/c9fo02852h

    Article  CAS  PubMed  Google Scholar 

  14. Xie R, Zhang Y (2022) Association between 19 dietary fatty acids intake and rheumatoid arthritis: results of a nationwide survey. Prostaglandins, Leukot Essent Fatty Acids 188:102530

    Article  PubMed  Google Scholar 

  15. Xie R, Zhang Y (2023) Associations between dietary flavonoid intake with hepatic steatosis and fibrosis quantified by VCTE: evidence from NHANES and FNDDS. Nutr Metab Cardiovasc Dis S0939-4753(23):00090-X

  16. Shivappa N, Steck SE, Hurley TG et al (2014) Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr 17:1689–1696. https://doi.org/10.1017/s1368980013002115

    Article  PubMed  Google Scholar 

  17. Shivappa N, Godos J, Hébert JR et al (2018) Dietary inflammatory index and cardiovascular risk and mortality-a meta-analysis. Nutrients. https://doi.org/10.3390/nu10020200

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tian T, Zhang J, Xie W et al (2022) Dietary quality and relationships with metabolic dysfunction-associated fatty liver disease (MAFLD) among United States adults, results from NHANES 2017–2018. Nutrients. https://doi.org/10.3390/nu14214505

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xiang S, Wang Y, Qian S et al (2022) The association between dietary inflammation index and the risk of rheumatoid arthritis in Americans. Clin Rheumatol 41:2647–2658. https://doi.org/10.1007/s10067-022-06217-9

    Article  PubMed  Google Scholar 

  20. Zhang Y, Xie R, Ou J (2022) A U-shaped association between serum albumin with total triiodothyronine in adults. J Clin Lab Anal 36:e24473. https://doi.org/10.1002/jcla.24473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie R, Zhang Y (2022) Is assessing the degree of hepatic steatosis and fibrosis based on index calculations the best choice for epidemiological studies? Environ Pollut 317:120783. https://doi.org/10.1016/j.envpol.2022.120783

    Article  CAS  PubMed  Google Scholar 

  22. Xie R, Zhang Y (2022) Index-based calculation or transient elastography to assess the degree of hepatic steatosis and fibrosis. J Nutr. https://doi.org/10.1016/j.tjnut.2022.10.015

    Article  PubMed  Google Scholar 

  23. Marx W, Veronese N, Kelly JT et al (2021) The dietary inflammatory index and human health: an umbrella review of meta-analyses of observational studies. Adv Nutr 12:1681–1690. https://doi.org/10.1093/advances/nmab037

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nakamura E, Miyao K (2007) A method for identifying biomarkers of aging and constructing an index of biological age in humans. J Gerontol A Biol Sci Med Sci 62:1096–1105. https://doi.org/10.1093/gerona/62.10.1096

    Article  PubMed  Google Scholar 

  25. Crimmins E, Vasunilashorn S, Kim JK et al (2008) Biomarkers related to aging in human populations. Adv Clin Chem 46:161–216. https://doi.org/10.1016/s0065-2423(08)00405-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klemera P, Doubal S (2006) A new approach to the concept and computation of biological age. Mech Ageing Dev 127:240–248. https://doi.org/10.1016/j.mad.2005.10.004

    Article  PubMed  Google Scholar 

  27. Levine ME, Lu AT, Quach A et al (2018) An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 10:573–591. https://doi.org/10.18632/aging.101414

    Article  PubMed  Google Scholar 

  28. Zhang Z, Zhou X, Deng L et al (2022) The association between serum soluble Klotho and chronic kidney disease among us adults ages 40 to 79 years: cross-sectional study. Front Public Health. https://doi.org/10.3389/fpubh.2022.995314

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47. https://doi.org/10.1093/nar/30.10.e47

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xie R, Zhang Y, Yan T et al (2022) Relationship between nonalcoholic fatty liver disease and bone mineral density in adolescents. Medicine (Baltimore) 101:e31164. https://doi.org/10.1097/md.0000000000031164

    Article  CAS  PubMed  Google Scholar 

  31. Bahour N, Cortez B, Pan H et al (2022) Diabetes mellitus correlates with increased biological age as indicated by clinical biomarkers. Geroscience 44:415–427. https://doi.org/10.1007/s11357-021-00469-0

    Article  CAS  PubMed  Google Scholar 

  32. Brown PJ, Wall MM, Chen C et al (2018) Biological age, not chronological age, is associated with late-life depression. J Gerontol A Biol Sci Med Sci 73:1370–1376. https://doi.org/10.1093/gerona/glx162

    Article  CAS  PubMed  Google Scholar 

  33. Meisel P, Pink C, Nauck M et al (2019) Construction of a biological age score to predict tooth loss over 10 years. J Dent Res 98:1096–1102. https://doi.org/10.1177/0022034519861037

    Article  CAS  PubMed  Google Scholar 

  34. Ma Q, Li BL, Yang L et al (2022) Association between phenotypic age and mortality in patients with multivessel coronary artery disease. Dis Markers 2022:4524032. https://doi.org/10.1155/2022/4524032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meinilä J, Perälä MM, Kautiainen H et al (2019) Healthy diets and telomere length and attrition during a 10-year follow-up. Eur J Clin Nutr 73:1352–1360. https://doi.org/10.1038/s41430-018-0387-4

    Article  PubMed  Google Scholar 

  36. Liu Q, Zhou D, Duan H et al (2021) Association of dietary inflammatory index and leukocyte telomere length with mild cognitive impairment in Chinese older adults. Nutr Neurosci. https://doi.org/10.1080/1028415x.2021.2017660

    Article  PubMed  Google Scholar 

  37. Jurado-Fasoli L, Amaro-Gahete FJ, Arias-Tellez MJ et al (2021) Relationship between dietary factors and S-Klotho plasma levels in young sedentary healthy adults. Mech Ageing Dev 194:111435. https://doi.org/10.1016/j.mad.2021.111435

    Article  CAS  PubMed  Google Scholar 

  38. Ma TC, Zhou J, Wang CX et al (2022) Association between dietary inflammatory index and s-klotho plasma levels in middle-aged and elderly people. Front Nutr 9:853332. https://doi.org/10.3389/fnut.2022.853332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jurado-Fasoli L, Castillo MJ, Amaro-Gahete FJ (2020) Dietary inflammatory index and s-klotho plasma levels in middle-aged adults. Nutrients. https://doi.org/10.3390/nu12020281

    Article  PubMed  PubMed Central  Google Scholar 

  40. Howcroft TK, Campisi J, Louis GB et al (2013) The role of inflammation in age-related disease. Aging (Albany NY) 5:84–93. https://doi.org/10.18632/aging.100531

    Article  CAS  PubMed  Google Scholar 

  41. Newcombe EA, Camats-Perna J, Silva ML et al (2018) Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease. J Neuroinflammation 15:276. https://doi.org/10.1186/s12974-018-1313-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xie R, Xiao M, Li L et al (2022) Association between SII and hepatic steatosis and liver fibrosis: A population-based study. Front Immunol 13:925690. https://doi.org/10.3389/fimmu.2022.925690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guzik TJ, Touyz RM (2017) Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension 70:660–667. https://doi.org/10.1161/hypertensionaha.117.07802

    Article  CAS  PubMed  Google Scholar 

  44. Papaconstantinou J (2019) The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease. Cells. https://doi.org/10.3390/cells8111383

    Article  PubMed  PubMed Central  Google Scholar 

  45. Custodero C, Mankowski RT, Lee SA et al (2018) Evidence-based nutritional and pharmacological interventions targeting chronic low-grade inflammation in middle-age and older adults: A systematic review and meta-analysis. Ageing Res Rev 46:42–59. https://doi.org/10.1016/j.arr.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gimeno-Mallench L, Sanchez-Morate E, Parejo-Pedrajas S et al (2020) The relationship between diet and frailty in aging. Endocr Metab Immune Disord Drug Targets 20:1373–1382. https://doi.org/10.2174/1871530320666200513083212

    Article  CAS  PubMed  Google Scholar 

  47. Willcox DC, Scapagnini G, Willcox BJ (2014) Healthy aging diets other than the mediterranean: a focus on the okinawan diet. Mech Ageing Dev 136–137:148–162. https://doi.org/10.1016/j.mad.2014.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bordoni A, Danesi F, Dardevet D et al (2017) Dairy products and inflammation: a review of the clinical evidence. Crit Rev Food Sci Nutr 57:2497–2525. https://doi.org/10.1080/10408398.2014.967385

    Article  CAS  PubMed  Google Scholar 

  49. Franceschi C, Garagnani P, Parini P et al (2018) Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14:576–590. https://doi.org/10.1038/s41574-018-0059-4

    Article  CAS  PubMed  Google Scholar 

  50. Fulop T, Witkowski JM, Olivieri F et al (2018) The integration of inflammaging in age-related diseases. Semin Immunol 40:17–35. https://doi.org/10.1016/j.smim.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  51. Beurel E, Toups M, Nemeroff CB (2020) The bidirectional relationship of depression and inflammation: double trouble. Neuron 107:234–256. https://doi.org/10.1016/j.neuron.2020.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McGrattan AM, McGuinness B, McKinley MC et al (2019) Diet and inflammation in cognitive ageing and alzheimer’s disease. Curr Nutr Rep 8:53–65. https://doi.org/10.1007/s13668-019-0271-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li J, Guasch-Ferré M, Chung W et al (2020) The mediterranean diet, plasma metabolome, and cardiovascular disease risk. Eur Heart J 41:2645–2656. https://doi.org/10.1093/eurheartj/ehaa209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. RX and ZN performed the analysis. RX and MX wrote a draft of this article. ML, YZ and LL conceived the study design. All authors contributed to the interpretation of the results and critically revised the manuscript for important intellectual content and approved the final version of the manuscript.

Corresponding authors

Correspondence to Mingjiang Liu or Ya Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The studies involving human participants were reviewed and approved by NCHS Ethics Review Board.

Statement of human and animal rights

The portions of this study involving human participants, human materials, or human data were conducted in accordance with the Declaration of Helsinki and were approved by the NCHS Ethics Review Board.

Informed consent

The patients/participants provided their written informed consent to participate in this study.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Supplementary file2 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, R., Ning, Z., Xiao, M. et al. Dietary inflammatory potential and biological aging among US adults: a population-based study. Aging Clin Exp Res 35, 1273–1281 (2023). https://doi.org/10.1007/s40520-023-02410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-023-02410-1

Keywords

Navigation