Skip to main content

Advertisement

Log in

Predicting postoperative delirium after hip arthroplasty for elderly patients using machine learning

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Postoperative delirium (POD) is a common and severe complication in elderly hip-arthroplasty patients.

Aim

This study aims to develop and validate a machine learning (ML) model that determines essential features related to POD and predicts POD for elderly hip-arthroplasty patients.

Methods

The electronic record data of elderly patients who received hip-arthroplasty surgery between January 2017 and April 2021 were enrolled as the dataset. The Confusion Assessment Method (CAM) was administered to the patients during their perioperative period. The feature section method was employed as a filter to determine leading features. The classical machine learning algorithms were trained in cross-validation processing, and the model with the best performance was built in predicting the POD. Metrics of the area under the curve (AUC), accuracy (ACC), sensitivity, specificity, and F1-score were calculated to evaluate the predictive performance.

Results

476 Arthroplasty elderly patients with general anesthesia were included in this study, and the final model combined feature selection method mutual information (MI) and linear binary classifier using logistic regression (LR) achieved an encouraging performance (AUC = 0.94, ACC = 0.88, sensitivity = 0.85, specificity = 0.90, F1-score = 0.87) on a balanced test dataset.

Conclusion

The model could predict POD with satisfying accuracy and reveal important features of suffering POD such as age, Cystatin C, GFR, CHE, CRP, LDH, monocyte count, history of mental illness or psychotropic drug use and intraoperative blood loss. Proper preoperative interventions for these factors could reduce the incidence of POD among elderly patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets can be available from the corresponding author on reasonable request.

References

  1. Lee SJ, Jung SH, Lee SU et al (2020) Postoperative delirium after hip surgery is a potential risk factor for incident dementia: a systematic review and meta-analysis of prospective studies. Arch Gerontol Geriatr 87:103977. https://doi.org/10.1016/j.archger.2019.103977

    Article  PubMed  Google Scholar 

  2. Lo CWT, Tsang WWN, Yan CH et al (2019) Risk factors for falls in patients with total hip arthroplasty and total knee arthroplasty: a systematic review and meta-analysis. Osteoarthr Cartil 27:979–993. https://doi.org/10.1016/j.joca.2019.04.006

    Article  CAS  Google Scholar 

  3. Rong X, Ding Z, da Yu H et al (2021) Risk factors of postoperative delirium in the knee and hip replacement patients: a systematic review and meta-analysis. J Orthop Surg Res 16:1–18. https://doi.org/10.1186/s13018-020-02127-1

    Article  Google Scholar 

  4. Ristescu AI, Pintilie G, Moscalu M et al (2021) Preoperative cognitive impairment and the prevalence of postoperative delirium in elderly cancer patients—a prospective observational study. Diagnostics 11:275. https://doi.org/10.3390/diagnostics11020275

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shi Z, Mei X, Li C et al (2019) Postoperative delirium is associated with long-term decline in activities of daily living. Anesthesiology 131:492–500. https://doi.org/10.1097/ALN.0000000000002849

    Article  PubMed  Google Scholar 

  6. Gandossi CM, Zambon A, Oliveri G et al (2021) Frailty, post-operative delirium and functional status at discharge in patients with hip fracture. Int J Geriatr Psychiatry 36:1524–1530. https://doi.org/10.1002/gps.5561

    Article  PubMed  PubMed Central  Google Scholar 

  7. Beishuizen SJE, Scholtens RM, van Munster BC et al (2017) Unraveling the relationship between delirium, brain damage, and subsequent cognitive decline in a cohort of individuals undergoing surgery for hip fracture. J Am Geriatr Soc 65:130–136. https://doi.org/10.1111/jgs.14470

    Article  PubMed  Google Scholar 

  8. Krogseth M, Wyller TB, Engedal K et al (2014) Delirium is a risk factor for institutionalization and functional decline in older hip fracture patients. J Psychosom Res 76:68–74. https://doi.org/10.1016/j.jpsychores.2013.10.006

    Article  PubMed  Google Scholar 

  9. Wang CG, Qin YF, Wan X et al (2018) Incidence and risk factors of postoperative delirium in the elderly patients with hip fracture. J Orthop Surg Res 13:1–7. https://doi.org/10.1186/s13018-018-0897-8

    Article  Google Scholar 

  10. Choi J-Y, Kim K, Kang M et al (2019) Impact of a delirium prevention project among older hospitalized patients who underwent orthopedic surgery: a retrospective cohort study. BMC Geriatr 19:289. https://doi.org/10.1186/s12877-019-1303-z

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sillner AY, Mcconeghy RO, Madrigal C et al (2020) The association of a frailty index and incident delirium in older hospitalized patients: an observational cohort study. Clin Interv Aging 15:2053–2061

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guo Y, Jia P, Zhang J et al (2016) Prevalence and risk factors of postoperative delirium in elderly hip fracture patients. J Int Med Res 44:317–327. https://doi.org/10.1177/0300060515624936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang T, Park SY, Lee JH et al (2020) Incidence and risk factors of postoperative delirium after spinal surgery in older patients. Sci Rep 10:1–6. https://doi.org/10.1038/s41598-020-66276-3

    Article  CAS  Google Scholar 

  14. Song KJ, Ko JH, Kwon TY et al (2019) Etiology and related factors of postoperative delirium in orthopedic surgery. CiOS Clin Orthop Surg 11:297–301. https://doi.org/10.4055/cios.2019.11.3.297

    Article  PubMed  Google Scholar 

  15. Wu J, Yin Y, Jin M et al (2021) The risk factors for postoperative delirium in adult patients after hip fracture surgery: a systematic review and meta-analysis. Int J Geriatr Psychiatry 36:3–14

    Article  PubMed  Google Scholar 

  16. Chan CK, Sieber FE, Blennow K et al (2021) Association of depressive symptoms with postoperative delirium and CSF biomarkers for Alzheimer’s disease among hip fracture patients. Am J Geriatr Psychiatry. https://doi.org/10.1016/j.jagp.2021.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pan Z, Huang K, Huang W et al (2019) The risk factors associated with delirium after lumbar spine surgery in elderly patients. Quant Imaging Med Surg. https://doi.org/10.21037/qims.2019.04.09

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mazzola P, Ward L, Zazzetta S et al (2017) Association between preoperative malnutrition and postoperative delirium after hip fracture surgery in older adults. J Am Geriatr Soc 65:1222–1228. https://doi.org/10.1111/jgs.14764

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhao J, Liang G, Hong K et al (2022) Risk factors for postoperative delirium following total hip or knee arthroplasty: a meta-analysis. Front Psychol 13:993136

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Shen X (2018) Postoperative delirium in the elderly: the potential neuropathogenesis. Aging Clin Exp Res. https://doi.org/10.1007/s40520-018-1008-8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen D, Li Y, Li Q et al (2021) Risk factors and a nomogram model establishment for postoperative delirium in elderly patients undergoing arthroplasty surgery: a single-center retrospective study. Biomed Res Int 2021:6607386. https://doi.org/10.1155/2021/6607386

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mosk CA, van Vugt JLA, de Jonge H et al (2018) Low skeletal muscle mass as a risk factor for postoperative delirium in elderly patients undergoing colorectal cancer surgery. Clin Interv Aging 13:2097–2106. https://doi.org/10.2147/CIA.S175945

    Article  PubMed  PubMed Central  Google Scholar 

  23. Davani AB, Snyder SH, Oh ES et al (2021) Kidney function modifies the effect of intraoperative opioid dosage on postoperative delirium. J Am Geriatr Soc 69:191–196. https://doi.org/10.1111/jgs.16870

    Article  PubMed  Google Scholar 

  24. Gattas BS, Ibetoh CN, Stratulat E et al (2020) The impact of low hemoglobin levels on cognitive brain functions. Cureus. https://doi.org/10.7759/cureus.11378

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yu L, Wen G, Zhu S et al (2021) Abnormal phosphorylation of tau protein and neuroinflammation induced by laparotomy in an animal model of postoperative delirium. Exp Brain Res 239:867–880. https://doi.org/10.1007/s00221-020-06007-2

    Article  CAS  PubMed  Google Scholar 

  26. Zhang X, Tong DK, Ji F et al (2019) Predictive nomogram for postoperative delirium in elderly patients with a hip fracture. Injury 50:392–397. https://doi.org/10.1016/j.injury.2018.10.034

    Article  PubMed  Google Scholar 

  27. Wingert T, Lee C (2021) Machine learning, deep learning, and closed loop devices—anesthesia delivery. Anesthesiol Clin 39:565–581. https://doi.org/10.1016/j.anclin.2021.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  28. Collins GS, Moons KGM (2019) Reporting of artificial intelligence prediction models. Lancet (Lond, Engl) 393:1577–1579. https://doi.org/10.1016/S0140-6736(19)30037-6

    Article  Google Scholar 

  29. Niazi MKK, Parwani AV, Gurcan MN (2019) Digital pathology and artificial intelligence. Lancet Oncol 20:e253–e261. https://doi.org/10.1016/S1470-2045(19)30154-8

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Ms LL, Ji M et al (2020) Predicting postoperative delirium after microvascular decompression surgery with machine learning. J Clin Anesth 66:109896. https://doi.org/10.1016/j.jclinane.2020.109896

    Article  PubMed  Google Scholar 

  31. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314. https://doi.org/10.1016/j.echo.2016.01.011

    Article  PubMed  Google Scholar 

  32. MacKay DJ (2003) Information theory, inference and learning algorithms. Cambridge University Press, Cambridge

    Google Scholar 

  33. Doquire G, Verleysen M (2013) Mutual information-based feature selection for multilabel classification. Neurocomputing 122:148–155. https://doi.org/10.1016/j.neucom.2013.06.035

    Article  Google Scholar 

  34. Estevez PA, Tesmer M, Perez CA et al (2009) Normalized mutual information feature selection. IEEE Trans Neural Netw 20:189–201. https://doi.org/10.1109/TNN.2008.2005601

    Article  PubMed  Google Scholar 

  35. Hoque N, Bhattacharyya DK, Kalita JK (2014) MIFS-ND: a mutual information-based feature selection method. Expert Syst Appl 41:6371–6385. https://doi.org/10.1016/j.eswa.2014.04.019

    Article  Google Scholar 

  36. Al Imran A, Amin MN, Johora FT (2018) Classification of chronic kidney disease using logistic regression, feedforward neural network and wide & deep learning. In: 2018 International Conference on Innovation in Engineering and Technology (ICIET). IEEE, pp 1–6

  37. Xu W, Zhao Y, Nian S et al (2018) Differential analysis of disease risk assessment using binary logistic regression with different analysis strategies. J Int Med Res 46:3656–3664. https://doi.org/10.1177/0300060518777173

    Article  PubMed  PubMed Central  Google Scholar 

  38. James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning. Springer New York, New York, NY

    Book  Google Scholar 

  39. Ford AH, Almeida OP (2015) Pharmacological interventions for preventing delirium in the elderly. Maturitas 81:287–292. https://doi.org/10.1016/j.maturitas.2015.03.024

    Article  CAS  PubMed  Google Scholar 

  40. Laudisio A, Nenna A, Musarò M et al (2021) Perioperative management after elective cardiac surgery: the predictive value of procalcitonin for infective and noninfective complications. Future Cardiol 17:1349–1358. https://doi.org/10.2217/fca-2020-0245

    Article  CAS  PubMed  Google Scholar 

  41. Viderman D, Brotfain E, Bilotta F et al (2020) Risk factors and mechanisms of postoperative delirium after intracranial neurosurgical procedures. Asian J Anesthesiol 58:5–13. https://doi.org/10.6859/aja.202003_58(1).0002

    Article  PubMed  Google Scholar 

  42. Ren A, Zhang N, Zhu H et al (2021) Effects of preoperative anxiety on postoperative delirium in elderly patients undergoing elective orthopedic surgery: a prospective observational cohort study. Clin Interv Aging 16:549–557. https://doi.org/10.2147/CIA.S300639

    Article  PubMed  PubMed Central  Google Scholar 

  43. Moore LE, Sferra JJ, Engoren M (2020) Timing and risk factors associated with postoperative stroke in vascular surgery patients using time-varying coefficients from a cox model. Anesth Analg 130:673–684. https://doi.org/10.1213/ANE.0000000000004595

    Article  PubMed  Google Scholar 

  44. Yang Y, Zhao X, Gao L et al (2021) Incidence and associated factors of delirium after orthopedic surgery in elderly patients: a systematic review and meta-analysis. Aging Clin Exp Res 33:1493–1506. https://doi.org/10.1007/s40520-020-01674-1

    Article  PubMed  Google Scholar 

  45. de Ruiter SC, de Jonghe JFM, Jansen RWMM et al (2017) Cognitive impairment is very common in elderly patients with syncope and unexplained falls. J Am Med Dir Assoc 18:409–413. https://doi.org/10.1016/j.jamda.2016.11.012

    Article  PubMed  Google Scholar 

  46. Rahmatullah H, Abd B, Glasg M et al (2015) postoperative delirium in patients undergoing total joint arthroplasty: a systematic review. J Arthroplast 30:1414–1417. https://doi.org/10.1016/j.arth.2015.03.012

    Article  Google Scholar 

  47. Aldecoa C, Bettelli G, Bilotta F et al (2017) European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesthesiol 34:192–214. https://doi.org/10.1097/EJA.0000000000000594

    Article  PubMed  Google Scholar 

  48. Skretteberg WH, Holmefoss I, Krogseth M (2022) Delirium during acute events in nursing home patients. J Am Med Dir Assoc 23:146–149. https://doi.org/10.1016/j.jamda.2021.10.006

    Article  PubMed  Google Scholar 

  49. Fondeur J, Escudero Mendez L, Srinivasan M et al (2022) Dexmedetomidine in prevention of postoperative delirium: a systematic review. Cureus 14:e25639. https://doi.org/10.7759/cureus.25639

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shokri H, Ali I (2020) A randomized control trial comparing prophylactic dexmedetomidine versus clonidine on rates and duration of delirium in older adult patients undergoing coronary artery bypass grafting. J Clin Anesth 61:109622. https://doi.org/10.1016/j.jclinane.2019.09.016

    Article  CAS  PubMed  Google Scholar 

  51. Tsang W (2019) Recent advances in understanding and managing mitral valve disease. F1000Research 8:1–10. https://doi.org/10.12688/f1000research.16066.1

    Article  Google Scholar 

  52. Umholtz M, Nader ND (2017) Anesthetic immunomodulation of the neuroinflammation in postoperative cognitive dysfunction. Immunol Investig 46:805–815. https://doi.org/10.1080/08820139.2017.1373898

    Article  CAS  Google Scholar 

  53. Velagapudi R, Subramaniyan S, Xiong C et al (2019) Orthopedic surgery triggers attention deficits in a delirium-like mouse model. Front Immunol 10:1–13. https://doi.org/10.3389/fimmu.2019.02675

    Article  CAS  Google Scholar 

  54. Ren Q, Wen YZ, Wang J et al (2020) Elevated level of serum c-reactive protein predicts postoperative delirium among patients receiving cervical or lumbar surgery. Biomed Res Int. https://doi.org/10.1155/2020/5480148

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mazza MG, Capellazzi M, Lucchi S et al (2020) Monocyte count in schizophrenia and related disorders: a systematic review and meta-analysis. Acta Neuropsychiatr 32:229–236. https://doi.org/10.1017/neu.2020.12

    Article  PubMed  Google Scholar 

  56. Seda VP (2021) Preoperative management and postoperative delirium in older people. Open Access Indones J Med Rev 1:38–40. https://doi.org/10.37275/oaijmr.v1i2.556

    Article  Google Scholar 

  57. Cortese GP, Burger C (2017) Neuroinflammatory challenges compromise neuronal function in the aging brain: postoperative cognitive delirium and Alzheimer’s disease. Behav Brain Res 322:269–279. https://doi.org/10.1016/j.bbr.2016.08.027

    Article  CAS  PubMed  Google Scholar 

  58. Subramaniyan S, Terrando N (2019) Neuroinflammation and perioperative neurocognitive disorders. Anesth Analg 128:781–788. https://doi.org/10.1213/ANE.0000000000004053

    Article  PubMed  PubMed Central  Google Scholar 

  59. Leite HR, de Oliveira-Lima OC, de Melo Pereira L et al (2016) Vesicular acetylcholine transporter knock down-mice are more susceptible to inflammation, c-Fos expression and sickness behavior induced by lipopolysaccharide. Brain Behav Immun 57:282–292. https://doi.org/10.1016/j.bbi.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  60. Tranah TH, Vijay GKM, Ryan JM et al (2013) Systemic inflammation and ammonia in hepatic encephalopathy. Metab Brain Dis 28:1–5. https://doi.org/10.1007/s11011-012-9370-2

    Article  CAS  PubMed  Google Scholar 

  61. Marcantonio ER, Goldman L, Orav EJ et al (1998) The association of intraoperative factors with the development of postoperative delirium. Am J Med 105:380–384. https://doi.org/10.1016/s0002-9343(98)00292-7

    Article  CAS  PubMed  Google Scholar 

  62. Böhner H, Hummel TC, Habel U et al (2003) Predicting delirium after vascular surgery: a model based on pre-and intraoperative data. Ann Surg 238:149–156. https://doi.org/10.1097/01.sla.0000077920.38307.5f

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yang YCM, Su S et al (2021) Machine learning-based radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. BMC Cancer 21:1268. https://doi.org/10.1186/s12885-021-08947-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park YW, Choi YS, Kim SE et al (2020) Radiomics features of hippocampal regions in magnetic resonance imaging can differentiate medial temporal lobe epilepsy patients from healthy controls. Sci Rep 10:19567. https://doi.org/10.1038/s41598-020-76283-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gu Q, Feng Z, Liang Q et al (2019) Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer. Eur J Radiol 118:32–37. https://doi.org/10.1016/j.ejrad.2019.06.025

    Article  PubMed  Google Scholar 

  66. Tuba E, Strumberger I, Bezdan T et al (2019) Classification and feature selection method for medical datasets by brain storm optimization algorithm and support vector machine. Procedia Comput Sci 162:307–315. https://doi.org/10.1016/j.procs.2019.11.289

    Article  Google Scholar 

  67. Polat K, Güneş S (2009) A new feature selection method on classification of medical datasets: kernel F-score feature selection. Expert Syst Appl 36:10367–10373. https://doi.org/10.1016/j.eswa.2009.01.041

    Article  Google Scholar 

  68. Chatterjee R, Maitra T, Hafizul Islam SK et al (2019) A novel machine learning based feature selection for motor imagery EEG signal classification in Internet of medical things environment. Futur Gener Comput Syst 98:419–434. https://doi.org/10.1016/j.future.2019.01.048

    Article  Google Scholar 

  69. Shilaskar S, Ghatol A (2013) Feature selection for medical diagnosis: evaluation for cardiovascular diseases. Expert Syst Appl 40:4146–4153. https://doi.org/10.1016/j.eswa.2013.01.032

    Article  Google Scholar 

Download references

Funding

This study was supported by the Brand Discipline Construction Funds of the First Affiliated Hospital of Chongqing Medical University, Scientific research project of Chongqing Municipal Health Commission (2022WSJK117), General Program of Chongqing Natural Science Foundation (CSTB2022NSCQ-MSX0854), the Key Research and Development Project of the Ministry of Science and Technology of the People’s Republic of China (2020YFF0305104), and the Key Research and Development Project of Science and Technology Department of Sichuan Province (2020YFS0324).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Tang or Jun Cao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical statement

This study was approved by the Ethics Committee of the First Affiliated Hospital of Chongqing Medical University (Ethics code: 2021-201) and conducted according to the principles of the Declaration of Helsinki.

Informed consent

In this retrospective study, we utilized routine clinical data from the records, and the requirement for patients’ informed consent was waived by the Ethics Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7057 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Wang, W., Wang, S. et al. Predicting postoperative delirium after hip arthroplasty for elderly patients using machine learning. Aging Clin Exp Res 35, 1241–1251 (2023). https://doi.org/10.1007/s40520-023-02399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-023-02399-7

Keywords

Navigation