Skip to main content

Advertisement

Log in

The recombined memory: associative inference in Alzheimer’s disease

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Associative inference refers to an adaptive ability that allows flexible recombination of information acquired during previous experiences to make new connections that they have not directly experienced. This cognitive ability has been widely associated with the hippocampus.

Aims

We investigated associative inference in patients with Alzheimer’s disease and control participants.

Methods

The task has two phases. In the training phase, participants learned to encode overlapping pairs of objects (AB + BC). In the test phase, participants were invited to retrieve previously see associations (i.e., AB, BC) as well as novel associations between the previously exposed objects (i.e., AC). In addition, we test the relationship between associative inference and cognitive flexibility.

Results

Analysis demonstrated lower associative inference in AD patients than in control participants. Interestingly, performance on the associative inference task was significantly correlated with low performance on a cognitive flexibility task in AD patients.

Discussion

Our findings demonstrate a compromise of the ability to flexibly combine new representations from prior memories in AD, which is likely related to the hippocampal dysfunction in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data is available upon request by email to the first author.

References

  1. Zeithamova D, Schlichting ML, Preston AR (2012) The hippocampus and inferential reasoning: building memories to navigate future decisions. Front Hum Neurosci 6:70

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schlichting ML, Zeithamova D, Preston AR (2014) CA1 subfield contributions to memory integration and inference. Hippocampus 24:1248–1260

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zeithamova D, Preston AR (2010) Flexible memories: differential roles for medial temporal lobe and prefrontal cortex in cross-episode binding. J Neurosci 30:14676–14684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. El Haj M, Antoine P, Kapogiannis D (2015) Flexibility decline contributes to similarity of past and future thinking in Alzheimer’s disease. Hippocampus 25:1447–1455

    Article  PubMed  PubMed Central  Google Scholar 

  5. Etienne V, Marin-Lamellet C, Laurent B (2013) Mental flexibility impairment in drivers with early Alzheimer’s disease: a simulator-based study. IATSS Res 37:16–20

    Article  Google Scholar 

  6. Pennanen C, Kivipelto M, Tuomainen S et al (2004) Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 25:303–310

    Article  PubMed  Google Scholar 

  7. Cavedo E, Suppa P, Lange C et al (2017) Fully automatic MRI-based hippocampus volumetry using FSL-FIRST: intra-scanner test-retest stability, inter-field strength variability, and performance as enrichment biomarker for clinical trials using prodromal target populations at risk for Alzheimer’s disease. J Alzheimers Dis 60:151–164

    Article  PubMed  Google Scholar 

  8. Suppa P, Hampel H, Kepp T et al (2016) Performance of hippocampus volumetry with FSL-FIRST for prediction of Alzheimer’s disease dementia in at risk subjects with amnestic mild cognitive impairment. J Alzheimers Dis 51:867–873

    Article  PubMed  Google Scholar 

  9. Pini L, Pievani M, Bocchetta M et al (2016) Brain atrophy in Alzheimer’s disease and aging. Ageing Res Rev 30:25–48

    Article  PubMed  Google Scholar 

  10. Teipel SJ, Grothe M, Lista S et al (2013) Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease. Med Clin North Am 97:399–424

    Article  PubMed  Google Scholar 

  11. Eichenbaum H (2001) The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav Brain Res 127:199–207

    Article  CAS  PubMed  Google Scholar 

  12. Eichenbaum H (1999) The hippocampus and mechanisms of declarative memory. Behav Brain Res 103:123–133

    Article  CAS  PubMed  Google Scholar 

  13. Eichenbaum H, Cohen NJ (2001) From conditioning to conscious recollection: memory systems of the brain. Oxford UP, New York

    Google Scholar 

  14. Bunsey M, Eichenbaum H (1996) Conservation of hippocampal memory function in rats and humans. Nature 379:255–257

    Article  CAS  PubMed  Google Scholar 

  15. Dusek JA, Eichenbaum H (1997) The hippocampus and memory for orderly stimulus relations. Proc Natl Acad Sci U S A 94:7109–7114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Devito LM, Kanter BR, Eichenbaum H (2010) The hippocampus contributes to memory expression during transitive inference in mice. Hippocampus 20:208–217

    PubMed  PubMed Central  Google Scholar 

  17. Buckmaster CA, Eichenbaum H, Amaral DG et al (2004) Entorhinal cortex lesions disrupt the relational organization of memory in monkeys. J Neurosci 24:9811–9825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Preston AR, Shrager Y, Dudukovic NM et al (2004) Hippocampal contribution to the novel use of relational information in declarative memory. Hippocampus 14:148–152

    Article  PubMed  Google Scholar 

  19. Zalesak M, Heckers S (2009) The role of the hippocampus in transitive inference. Psychiatry Res 172:24–30

    Article  PubMed  PubMed Central  Google Scholar 

  20. Heckers S, Zalesak M, Weiss AP et al (2004) Hippocampal activation during transitive inference in humans. Hippocampus 14:153–162

    Article  PubMed  Google Scholar 

  21. Greene AJ, Gross WL, Elsinger CL et al (2006) An FMRI analysis of the human hippocampus: inference, context, and task awareness. J Cogn Neurosci 18:1156–1173

    Article  PubMed  PubMed Central  Google Scholar 

  22. Moustafa AA, Wufong E, Servatius RJ et al (2013) Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: a computational model. Brain Res 1493:48–67

    Article  CAS  PubMed  Google Scholar 

  23. Moustafa AA, Hewedi DH, Eissa AM et al (2012) The relationship between associative learning, transfer generalization, and homocysteine levels in mild cognitive impairment. PLoS One 7:e46496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krishna R, Moustafa AA, Eby LA et al (2012) Learning and generalization in healthy aging: implication for frontostriatal and hippocampal function. Cogn Behav Neurol 25:7–15

    Article  PubMed  PubMed Central  Google Scholar 

  25. El Haj M, Kessels RPC (2013) Context Memory in Alzheimer’s Disease. Dement Geriatr Cogn Dis Extra 3:342–350

    Article  PubMed  PubMed Central  Google Scholar 

  26. El Haj M, Postal V, Allain P (2013) Destination memory in Alzheimer’s disease: when I imagine telling Ronald Reagan about Paris. Cortex 49:82–89

    Article  PubMed  Google Scholar 

  27. Parra MA, Abrahams S, Logie RH et al (2010) Visual short-term memory binding deficits in familial Alzheimer’s disease. Brain 133:2702–2713

    Article  PubMed  Google Scholar 

  28. Parra MA, Abrahams S, Fabi K et al (2009) Short-term memory binding deficits in Alzheimer’s disease. Brain 132:1057–1066

    Article  PubMed  Google Scholar 

  29. Sperling RA, Bates JF, Chua EF et al (2003) fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:44–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 7:263–269

    Article  Google Scholar 

  31. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  32. Grober E, Buschke H (1987) Genuine memory deficits in dementia. Dev Neuropsychol 3:13–36

    Article  Google Scholar 

  33. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662

    Article  Google Scholar 

  34. Miyake A, Friedman NP, Emerson MJ et al (2000) The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol 41:49–100

    Article  CAS  PubMed  Google Scholar 

  35. Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361–370

    Article  CAS  PubMed  Google Scholar 

  36. Herrmann C (1997) International experiences with the hospital anxiety and depression scale–a review of validation data and clinical results. J Psychosom Res 42:17–41

    Article  CAS  PubMed  Google Scholar 

  37. Peirce JW (2007) PsychoPy–psychophysics software in python. J Neurosci Methods 162:8–13

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cohen J (1988) Statistical power analysis for the behavioral sciences. Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  39. Rosenthal R, DiMatteo MR (2001) Meta-analysis: recent developments in quantitative methods for literature reviews. Annu Rev Psychol 52:59–82

    Article  CAS  PubMed  Google Scholar 

  40. Ellis PD (2010) The essential guide to effect sizes: statistical power, meta-analysis, and the interpretation of research results. Cambridge University Press, New York, NY

    Book  Google Scholar 

  41. Baudic S, Barba GD, Thibaudet MC et al (2006) Executive function deficits in early Alzheimer’s disease and their relations with episodic memory. Arch Clin Neuropsychol 21:15–21

    Article  PubMed  Google Scholar 

  42. Duarte A, Hayasaka S, Du A et al (2006) Volumetric correlates of memory and executive function in normal elderly, mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 406:60–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kirova AM, Bays RB, Lagalwar S (2015) Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. Biomed Res Int 2015:748212

    Article  PubMed  PubMed Central  Google Scholar 

  44. El Haj M, Antoine P, Amouyel P et al (2016) Apolipoprotein E (APOE) epsilon4 and episodic memory decline in Alzheimer’s disease: a review. Ageing Res Rev 27:15–22

    Article  PubMed  Google Scholar 

  45. El Haj M, Antoine P, Nandrino JL et al (2015) Autobiographical memory decline in Alzheimer’s disease, a theoretical and clinical overview. Ageing Res Rev 23:183–192

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zeithamova D, Manthuruthil C, Preston AR (2016) Repetition suppression in the medial temporal lobe and midbrain is altered by event overlap. Hippocampus 26:1464–1477

    Article  PubMed  PubMed Central  Google Scholar 

  47. Duncan K, Ketz N, Inati SJ et al (2012) Evidence for area CA1 as a match/mismatch detector: a high-resolution fMRI study of the human hippocampus. Hippocampus 22:389–398

    Article  PubMed  Google Scholar 

  48. Chen J, Olsen RK, Preston AR et al (2011) Associative retrieval processes in the human medial temporal lobe: hippocampal retrieval success and CA1 mismatch detection. Learn Mem 18:523–528

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    Article  CAS  PubMed  Google Scholar 

  50. Schlichting ML, Preston AR (2015) Memory integration: neural mechanisms and implications for behavior. Curr Opin Behav Sci 1:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schlichting ML, Mumford JA, Preston AR (2015) Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nat Commun 6:8151

    Article  CAS  PubMed  Google Scholar 

  52. West R (1996) An application of prefrontal cortex function theory to cognitive aging. Psychol Bull 120:272–292

    Article  CAS  PubMed  Google Scholar 

  53. DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: MEH. Data collection: MEH and GC. Data analysis and interpretation: MEH, AAM, FR and GC. Manuscript writing: MEH and AAM. All authors critically reviewed the manuscript and approved the final version to be published.

Corresponding author

Correspondence to Mohamad El Haj.

Ethics declarations

Conflict of interest

The authors report no conflicts with any product mentioned or concept discussed in this article. The study was supported by LABEX DISTALZ.

Ethics approval

The study was conducted in accordance with the principles of the Declaration of Helsinki with a favorable opinion (number 20202-A02276-33) from the Committee for the Protection of Persons (the French national ethical board).

Consent to participate

Written informed consent was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Haj, M., Moustafa, A.A., Robin, F. et al. The recombined memory: associative inference in Alzheimer’s disease. Aging Clin Exp Res 35, 1005–1013 (2023). https://doi.org/10.1007/s40520-023-02372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-023-02372-4

Keywords

Navigation