Skip to main content

Advertisement

Log in

Physical reserve: construct development and predictive utility

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

Physical reserve (PR) refers to one’s ability to maintain physical functioning despite age, illness, or injury. The measurement and predictive utility of PR, however, are not well established.

Aims

We quantified PR using a residual measurement approach by extracting standardized residuals from gait speed, while accounting for demographic and clinical/disease variables, and used it to predict fall-risk.

Methods

Participants (n = 510; age ≥ 70ys) were enrolled in a longitudinal study. Falls were assessed annually (in-person) and bimonthly (via structured telephone interview).

Results

General Estimating Equations (GEE) revealed that higher baseline PR was associated with reduced odds of reporting falls over repeated assessments in the total sample, and incident falls among those without fall’s history. The protective effect of PR against fall risk remained significant when adjusting for multiple demographic and medical confounders.

Discussion/Conclusion

We propose a novel framework to assessing PR and demonstrate that higher PR is protective against fall-risk in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data used in the current study may be requested in writing from the corresponding author.

References

  1. World Health Organization, Aging and health (2021) https://www.who.int/news-room/fact-sheets/detail/ageing-and-health. Accessed Jan 29 2022

  2. Xu F, Cohen SA, Greaney ML et al (2020) Longitudinal sex-specific physical function trends by age, race/ethnicity, and weight status. J Am Geriatr Soc 68:2270–2278. https://doi.org/10.1111/jgs.16638

    Article  PubMed  Google Scholar 

  3. Verghese J, Wang C, Holtzer R (2011) Relationship of clinic-based gait speed measurement to limitations in community-based activities in older adults. Arch Phys Med Rehabil 92:844–846. https://doi.org/10.1016/j.apmr.2010.12.030

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8:448–460. https://doi.org/10.1017/S1355617702813248

    Article  PubMed  Google Scholar 

  5. Stern Y (2009) Cognitive reserve. Neuropsychologia 47:2015–2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stern Y (2012) Cognitive reserve in ageing and alzheimer’s disease. The Lancet Neurology 11:1006–1012. https://doi.org/10.1016/S1474-4422(12)70191-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stern Y, Gurland B, Tatemichi TK et al (1994) Influence of education and occupation on the incidence of alzheimer’s disease. JAMA 271:1004–1010

    Article  CAS  PubMed  Google Scholar 

  8. Reed BR, Mungas D, Farias ST et al (2010) Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain 133:2196–2209. https://doi.org/10.1093/brain/awq154

    Article  PubMed  PubMed Central  Google Scholar 

  9. O’Brien C, Holtzer R (2021) Cognitive reserve moderates associations between walking performance under single- and dual-task conditions and incident mobility impairment in older adults. J Gerontol A Biol Sci Med Sci 76:e314–e320. https://doi.org/10.1093/gerona/glab178

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nelson ME, Jester DJ, Petkus AJ et al (2021) Cognitive reserve, alzheimer’s neuropathology, and risk of dementia: a systematic review and meta-analysis. Neuropsychol Rev 31:233–250. https://doi.org/10.1007/s11065-021-09478-4

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zahodne LB, Manly JJ, Brickman AM et al (2013) Quantifying cognitive reserve in older adults by decomposing episodic memory variance: replication and extension. J Int Neuropsychol Soc 19:854–862. https://doi.org/10.1017/S1355617713000738

    Article  PubMed  PubMed Central  Google Scholar 

  12. Whitson HE, Cohen HJ, Schmader KE et al (2018) Physical resilience: not simply the opposite of frailty. J Am Geriatr Soc 66:1459–1461. https://doi.org/10.1111/jgs.15233

    Article  PubMed  PubMed Central  Google Scholar 

  13. Whitson HE, Duan-Porter W, Schmader KE et al (2016) Physical resilience in older adults: systematic review and development of an emerging construct. J Gerontol A Biol Sci Med Sci 71:489–495. https://doi.org/10.1093/gerona/glv202

    Article  PubMed  Google Scholar 

  14. Bahl JS, Nelson MJ, Taylor M et al (2018) Biomechanical changes and recovery of gait function after total hip arthroplasty for osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage 26:847–863. https://doi.org/10.1016/j.joca.2018.02.897

    Article  CAS  PubMed  Google Scholar 

  15. Scarmeas N, Stern Y (2003) Cognitive reserve and lifestyle. J Clin Exp Neuropsychol 25:625–633. https://doi.org/10.1076/jcen.25.5.625.14576

    Article  PubMed  PubMed Central  Google Scholar 

  16. Newman AB, Simonsick EM, Naydeck BL et al (2006) Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. JAMA 295:2018–2026. https://doi.org/10.1001/jama.295.17.2018

    Article  CAS  PubMed  Google Scholar 

  17. Studenski S, Perera S, Patel K et al (2011) Gait speed and survival in older adults. JAMA 305:50–58. https://doi.org/10.1001/jama.2010.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verghese J, Holtzer R, Lipton RB et al (2012) Mobility stress test approach to predicting frailty, disability, and mortality in high-functioning older adults. J Am Geriatr Soc 60:1901–1905. https://doi.org/10.1111/j.1532-5415.2012.04145.x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Verghese J, Wang C, Allali G et al (2016) Modifiable risk factors for new-onset slow gait in older adults. J Am Med Dir Assoc 17:421–425. https://doi.org/10.1016/j.jamda.2016.01.017

    Article  PubMed  Google Scholar 

  20. Fortin PR, Clarke AE, Joseph L et al (1999) Outcomes of total hip and knee replacement: Preoperative functional status predicts outcomes at six months after surgery. Arthritis Rheum 42:1722–1728. https://doi.org/10.1002/1529-0131(199908)42:8%3c1722::AID-ANR22%3e3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  21. Dhamoon MS, Moon YP, Paik MC et al (2009) Long-term functional recovery after first ischemic stroke. Stroke 40:2805–2811. https://doi.org/10.1161/STROKEAHA.109.549576

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ruggero CR, Bilton TL, Teixeira LF et al (2013) Gait speed correlates in a multiracial population of community-dwelling older adults living in brazil: a cross-sectional population-based study. BMC Public Health 13:182. https://doi.org/10.1186/1471-2458-13-182

    Article  PubMed  PubMed Central  Google Scholar 

  23. Verghese J, LeValley A, Hall CB et al (2006) Epidemiology of gait disorders in community-residing older adults. J Am Geriatr Soc 54:255–261. https://doi.org/10.1111/j.1532-5415.2005.00580.x

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moreland B, Kakara R, Henry A (2020) Trends in nonfatal falls and fall-related injuries among adults aged ≥65 years—United States, 2012–2018, in MMWR Morb Mortal Wkly Rep. Centers for Disease Control and Prevention. p 875–881

  25. Enderlin C, Rooker J, Ball S et al (2015) Summary of factors contributing to falls in older adults and nursing implications. Geriatr Nurs 36:397–406. https://doi.org/10.1016/j.gerinurse.2015.08.006

    Article  PubMed  Google Scholar 

  26. Kelsey JL, Procter-Gray E, Berry SD et al (2012) Reevaluating the implications of recurrent falls in older adults: location changes the inference. J Am Geriatr Soc 60:517–524. https://doi.org/10.1111/j.1532-5415.2011.03834.x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rubenstein LZ (2006) Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing 35:ii37–ii41. https://doi.org/10.1093/ageing/afl084

    Article  PubMed  Google Scholar 

  28. Holtzer R, Wang C, Verghese J (2014) Performance variance on walking while talking tasks: theory, findings, and clinical implications. Age (Dordr) 36:373–381. https://doi.org/10.1007/s11357-013-9570-7

    Article  PubMed  Google Scholar 

  29. Baker PS, Bodner EV, Allman RM (2003) Measuring life-space mobility in community-dwelling older adults. J Am Geriatr Soc 51:1610–1614. https://doi.org/10.1046/j.1532-5415.2003.51512.x

    Article  PubMed  Google Scholar 

  30. Galvin JE, Roe CM, Powlishta KK et al (2005) The ad8: A brief informant interview to detect dementia. Neurology 65:559–564. https://doi.org/10.1212/01.wnl.0000172958.95282.2a

    Article  CAS  PubMed  Google Scholar 

  31. Holtzer R, Verghese J, Wang C et al (2008) Within-person across-neuropsychological test variability and incident dementia. JAMA 300:823–830. https://doi.org/10.1001/jama.300.7.823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holtzer R Mahoney JR, Izzetoglu M et al (2015) Online fronto-cortical control of simple and attention-demanding locomotion in humans. Neuroimage 112:152–159. https://doi.org/10.1016/j.neuroimage.2015.03.002

    Article  PubMed  Google Scholar 

  33. Kyrdalen IL, Thingstad P, Sandvik L et al (2019) Associations between gait speed and well-known fall risk factors among community-dwelling older adults. Physiother Res Int 24:e1743. https://doi.org/10.1002/pri.1743

    Article  PubMed  Google Scholar 

  34. Verghese J, Wang C, Ayers E et al (2017) Brain activation in high-functioning older adults and falls. Neurology 88:191. https://doi.org/10.1212/WNL.0000000000003421

    Article  PubMed  PubMed Central  Google Scholar 

  35. Verghese J, Holtzer R, Lipton RB et al (2009) Quantitative gait markers and incident fall risk in older adults. J Gerontol A Biol Sci Med Sci 64:896–901. https://doi.org/10.1093/gerona/glp033

    Article  PubMed  Google Scholar 

  36. Ghisletta P, Spini D (2004) An introduction to generalized estimating equations and an application to assess selectivity effects in a longitudinal study on very old individuals. J Educ Behav Stat 29:421–437. https://doi.org/10.3102/10769986029004421

    Article  Google Scholar 

  37. Bohannon RW, Williams Andrews A (2011) Normal walking speed: a descriptive meta-analysis. Physiotherapy 97:182–189. https://doi.org/10.1016/j.physio.2010.12.004

    Article  PubMed  Google Scholar 

  38. Mechakra-Tahiri SD, Freeman EE, Haddad S et al (2012) The gender gap in mobility: a global cross-sectional study. BMC Public Health 12:598–598. https://doi.org/10.1186/1471-2458-12-598

    Article  PubMed  PubMed Central  Google Scholar 

  39. Newman AB, Brach JS (2001) Gender gap in longevity and disability in older persons. Epidemiol Rev 23:343–355. https://doi.org/10.1093/oxfordjournals.epirev.a000810

    Article  CAS  PubMed  Google Scholar 

  40. Jehu DA, Davis JC, Falck RS et al (2021) Risk factors for recurrent falls in older adults: A systematic review with meta-analysis. Maturitas 144:23–28. https://doi.org/10.1016/j.maturitas.2020.10.021

    Article  CAS  PubMed  Google Scholar 

  41. Guralnik JM, Ferrucci L, Pieper CF et al (2000) Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol Ser A 55:M221–M231. https://doi.org/10.1093/gerona/55.4.M22

    Article  CAS  Google Scholar 

  42. Van Ancum JM, van Schooten KS, Jonkman NH et al (2019) Gait speed assessed by a 4-m walk test is not representative of daily-life gait speed in community-dwelling adults. Maturitas 121:28–34. https://doi.org/10.1016/j.maturitas.2018.12.008

    Article  PubMed  Google Scholar 

  43. Shiffman S, Stone AA, Hufford MR (2008) Ecological momentary assessment. Annu Rev Clin Psychol 4:1–32. https://doi.org/10.1146/annurev.clinpsy.3.022806.091415

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by grants from the National Institutes of Health (R01AG036921).

Author information

Authors and Affiliations

Authors

Contributions

Literature search (CO); data collection (RH); study design (CO, RH); analysis of data (CO, RH); manuscript preparation (CO); review of manuscript (CO, RH), approval of manuscript submission (CO, RH).

Corresponding author

Correspondence to Roee Holtzer.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report in relation to the current article. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Ethics approval

The work described in this manuscript has been executed in adherence with The Code of Ethics of the World Medical Association (Declaration of Helsinki).

Informed consent

Participants signed written informed consents in the first in-person study visit.

Institutional review board

Albert Einstein College of Medicine Institutional Review Board approved this study (IRB #: 2010-224).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Brien, C., Holtzer, R. Physical reserve: construct development and predictive utility. Aging Clin Exp Res 35, 1055–1062 (2023). https://doi.org/10.1007/s40520-023-02371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-023-02371-5

Keywords

Navigation