Skip to main content

Advertisement

Log in

Association between B-vitamins intake and frailty among patients with chronic obstructive pulmonary disease

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Purpose

Gain insight into the impact of B vitamins, including vitamin B1, vitamin B2, niacin, vitamin B6, total folate, and vitamin B12 on the risk of frailty in patients with chronic obstructive pulmonary disease (COPD).

Methods

This study was an American population-based cross-sectional study using data from the National Health and Nutrition Examination Survey (NHANES). A total of 1201 COPD patients were included in the analysis. Of these, the intake of B vitamins was determined by the two 24-h recall interviews. We followed the method constructed by Hakeem et al. to calculate the frailty index (FI), which is used as a reliable tool to assess the debilitating status of patients with COPD. Missing data were imputed by the MissForest method based on random forests. Multivariate logistic regression model and inverse probability weighted based on propensity scores were used to correct for confoundings.

Results

Logistic regression models showed that vitamin B6 intake was negatively correlated with frailty risk in COPD patients, while other B vitamins including B1, B2, niacin (vitamin B3), total folic acid and vitamin B12 were not. After adjusting for covariates, the association between vitamin B6 and frailty risk (adjusted OR = 0.80, 95%CI = 0.66–0.95, P = 0.013) remained significant. At the same time, sensitivity analysis proves the robustness of the results.

Conclusion

COPD patients with lower vitamin B6 intake have a higher risk of frailty. However, intake of vitamin B1, B2, niacin, total folic acid, and vitamin B12 was not associated with frailty risk in COPD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The NHANES datasets are publicly available in “www.cdc.gov/nchs/nhanes/”.

References

  1. Adeloye D, Song P, Zhu Y et al (2022) Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med 10:447–458. https://doi.org/10.1016/S2213-2600(21)00511-7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baker JR, Donnelly LE, Barnes PJ (2020) Senotherapy: a new horizon for COPD therapy. Chest 158:562–570. https://doi.org/10.1016/j.chest.2020.01.027

    Article  CAS  PubMed  Google Scholar 

  3. Córdoba-Lanús E, Cazorla-Rivero S, García-Bello MA et al (2021) Telomere length dynamics over 10-years and related outcomes in patients with COPD. Respir Res 22:56. https://doi.org/10.1186/s12931-021-01616-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Divo MJ, Celli BR, Poblador-Plou B et al (2018) Chronic Obstructive Pulmonary Disease (COPD) as a disease of early aging: evidence from the EpiChron Cohort. PLoS ONE 13:e0193143. https://doi.org/10.1371/journal.pone.0193143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim S, Myers L, Wyckoff J et al (2017) The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age. GeroScience 39:83–92. https://doi.org/10.1007/s11357-017-9960-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fried LP, Tangen CM, Walston J et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146-156. https://doi.org/10.1093/gerona/56.3.m146

    Article  CAS  PubMed  Google Scholar 

  8. Searle SD, Mitnitski A, Gahbauer EA et al (2008) A standard procedure for creating a frailty index. BMC Geriatr 8:24. https://doi.org/10.1186/1471-2318-8-24

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rockwood K, Mitnitski AB, MacKnight C (2002) Some mathematical models of frailty and their clinical implications. Rev Clin Gerontol 12:109–117. https://doi.org/10.1017/S0959259802012236

    Article  Google Scholar 

  10. Hanlon P, Lewsey J, Quint JK et al (2022) Frailty in COPD: an analysis of prevalence and clinical impact using UK Biobank. BMJ Open Respir Res 9:e001314. https://doi.org/10.1136/bmjresp-2022-001314

    Article  PubMed  PubMed Central  Google Scholar 

  11. Park SK, Richardson CR, Holleman RG et al (2013) Frailty in people with COPD, using the National Health and Nutrition Evaluation Survey dataset (2003–2006). Heart Lung 42:163–170. https://doi.org/10.1016/j.hrtlng.2012.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  12. Marengoni A, Vetrano DL, Manes-Gravina E et al (2018) The relationship between COPD and frailty: a systematic review and meta-analysis of observational studies. Chest 154:21–40. https://doi.org/10.1016/j.chest.2018.02.014

    Article  PubMed  Google Scholar 

  13. Yee N, Locke ER, Pike KC et al (2020) Frailty in chronic obstructive pulmonary disease and risk of exacerbations and hospitalizations. Int J Chron Obstruct Pulmon Dis 15:1967–1976. https://doi.org/10.2147/COPD.S245505

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee SY, Nyunt MSZ, Gao Q et al (2022) Co-occurrence of physical frailty and COPD and association with disability and mortality: Singapore longitudinal ageing study. Chest 161:1225–1238. https://doi.org/10.1016/j.chest.2021.12.633

    Article  PubMed  Google Scholar 

  15. Lahousse L, Ziere G, Verlinden VJA et al (2016) Risk of frailty in elderly with COPD: a population-based study. J Gerontol A Biol Sci Med Sci 71:689–695. https://doi.org/10.1093/gerona/glv154

    Article  CAS  PubMed  Google Scholar 

  16. Kennedy CC, Novotny PJ, LeBrasseur NK et al (2019) Frailty and clinical outcomes in chronic obstructive pulmonary disease. Ann Am Thorac Soc 16:217–224. https://doi.org/10.1513/AnnalsATS.201803-175OC

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ames BN (2018) Prolonging healthy aging: longevity vitamins and proteins. Proc Natl Acad Sci USA 115:10836–10844. https://doi.org/10.1073/pnas.1809045115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grootswagers P, Mensink M, Berendsen AAM et al (2021) Vitamin B-6 intake is related to physical performance in European older adults: results of the New Dietary Strategies Addressing the Specific Needs of the Elderly Population for Healthy Aging in Europe (NU-AGE) study. Am J Clin Nutr 113:781–789. https://doi.org/10.1093/ajcn/nqaa368

    Article  PubMed  PubMed Central  Google Scholar 

  19. Behrouzi P, Grootswagers P, Keizer PLC et al (2020) Dietary intakes of vegetable protein, folate, and vitamins B-6 and B-12 are partially correlated with physical functioning of Dutch older adults using copula graphical models. J Nutr 150:634–643. https://doi.org/10.1093/jn/nxz269

    Article  PubMed  Google Scholar 

  20. Siopis G, Porter J (2022) Contribution of biological age-predictive biomarkers to nutrition research: a systematic review of the current evidence and implications for future research and clinical practice. Adv Nutr. https://doi.org/10.1093/advances/nmac060

    Article  PubMed  PubMed Central  Google Scholar 

  21. Balboa-Castillo T, Struijk EA, Lopez-Garcia E et al (2018) Low vitamin intake is associated with risk of frailty in older adults. Age Ageing 47:872–879. https://doi.org/10.1093/ageing/afy105

    Article  PubMed  Google Scholar 

  22. Pannérec A, Migliavacca E, De Castro A et al (2018) Vitamin B12 deficiency and impaired expression of amnionless during aging. J Cachexia Sarcopenia Muscle 9:41–52. https://doi.org/10.1002/jcsm.12260

    Article  PubMed  Google Scholar 

  23. Conzade R, Koenig W, Heier M et al (2017) Prevalence and predictors of subclinical micronutrient deficiency in German older adults: results from the population-based KORA-Age study. Nutrients 9:E1276. https://doi.org/10.3390/nu9121276

    Article  CAS  Google Scholar 

  24. Soh Y, Won CW (2020) Association between frailty and vitamin B12 in the older Korean population. Medicine (Baltimore) 99:e22327. https://doi.org/10.1097/MD.0000000000022327

    Article  PubMed  Google Scholar 

  25. Ahluwalia N, Dwyer J, Terry A et al (2016) Update on NHANES dietary data: focus on collection, release, analytical considerations, and uses to inform public policy. Adv Nutr 7:121–134. https://doi.org/10.3945/an.115.009258

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moshfegh AJ, Rhodes DG, Baer DJ et al (2008) The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am J Clin Nutr 88:324–332. https://doi.org/10.1093/ajcn/88.2.324

    Article  CAS  PubMed  Google Scholar 

  27. FNDDS : USDA ARS n.d. https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds/. Accessed 15 July 2022

  28. Scarlata S, Finamore P, Laudisio A et al (2021) Association between frailty index, lung function, and major clinical determinants in chronic obstructive pulmonary disease. Aging Clin Exp Res 33:2165–2173. https://doi.org/10.1007/s40520-021-01878-z

    Article  PubMed  Google Scholar 

  29. Hakeem FF, Bernabé E, Sabbah W (2021) Association between oral health and frailty among American older adults. J Am Med Dir Assoc 22:559-563.e2. https://doi.org/10.1016/j.jamda.2020.07.023

    Article  PubMed  Google Scholar 

  30. Byrd DA, Judd SE, Flanders WD et al (2019) Development and validation of novel dietary and lifestyle inflammation scores. J Nutr 149:2206–2218. https://doi.org/10.1093/jn/nxz165

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ogden CL, Fakhouri TH, Carroll MD et al (2017) Prevalence of obesity among adults, by household income and education—United States, 2011-2014. MMWR Morb Mortal Wkly Rep 66:1369–1373. https://doi.org/10.15585/mmwr.mm6650a1

    Article  PubMed  PubMed Central  Google Scholar 

  32. Charlson ME, Carrozzino D, Guidi J et al (2022) Charlson Comorbidity Index: a critical review of clinimetric properties. Psychother Psychosom 91:8–35. https://doi.org/10.1159/000521288

    Article  PubMed  Google Scholar 

  33. Stekhoven DJ, Bühlmann P (2012) MissForest–non-parametric missing value imputation for mixed-type data. Bioinformatics 28:112–118. https://doi.org/10.1093/bioinformatics/btr597

    Article  CAS  PubMed  Google Scholar 

  34. van der Wal WM, Geskus RB (2011) ipw: an R package for inverse probability weighting. J Stat Softw 43:1–23. https://doi.org/10.18637/jss.v043.i13

    Article  Google Scholar 

  35. Hoogendijk EO, Afilalo J, Ensrud KE et al (2019) Frailty: implications for clinical practice and public health. Lancet 394:1365–1375. https://doi.org/10.1016/S0140-6736(19)31786-6

    Article  PubMed  Google Scholar 

  36. Jung YJ, Lee SH, Chang JH et al (2021) The impact of changes in the intake of fiber and antioxidants on the development of chronic obstructive pulmonary disease. Nutrients 13:580. https://doi.org/10.3390/nu13020580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chambaneau A, Filaire M, Jubert L et al (2016) Nutritional intake, physical activity and quality of life in COPD patients. Int J Sports Med 37:730–737. https://doi.org/10.1055/s-0035-1569368

    Article  CAS  PubMed  Google Scholar 

  38. Paulin FV, Zagatto AM, Chiappa GR et al (2017) Addition of vitamin B12 to exercise training improves cycle ergometer endurance in advanced COPD patients: a randomized and controlled study. Respir Med 122:23–29. https://doi.org/10.1016/j.rmed.2016.11.015

    Article  PubMed  Google Scholar 

  39. Paulin FV, Goelzer LS, de Müller PT (2020) Vitamin B12 supplementation and NT-proBNP levels in COPD patients: a secondary analysis of a randomized and controlled study in rehabilitation. Front Neurosci 14:740. https://doi.org/10.3389/fnins.2020.00740

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hanlon P, Nicholl BI, Jani BD et al (2018) Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493 737 UK Biobank participants. Lancet Public Health 3:e323–e332. https://doi.org/10.1016/S2468-2667(18)30091-4

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tay LB, Chua MP, Tay EL et al (2019) Multidomain geriatric screen and physical fitness assessment identify prefrailty/frailty and potentially modifiable risk factors in community-dwelling older adults. Ann Acad Med Singap 48:171–180

    Article  PubMed  Google Scholar 

  42. Bernabeu-Mora R, Oliveira-Sousa SL, Sánchez-Martínez MP et al (2020) Frailty transitions and associated clinical outcomes in patients with stable COPD: a longitudinal study. PLoS ONE 15:e0230116. https://doi.org/10.1371/journal.pone.0230116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Palliyaguru DL, Moats JM, Di Germanio C et al (2019) Frailty index as a biomarker of lifespan and healthspan: focus on pharmacological interventions. Mech Ageing Dev 180:42–48. https://doi.org/10.1016/j.mad.2019.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  44. Diebel LWM, Rockwood K (2021) Determination of biological age: geriatric assessment vs biological biomarkers. Curr Oncol Rep 23:104. https://doi.org/10.1007/s11912-021-01097-9

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cardoso AL, Fernandes A, Aguilar-Pimentel JA et al (2018) Towards frailty biomarkers: candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev. https://doi.org/10.1016/j.arr.2018.07.004

    Article  PubMed  Google Scholar 

  46. Kane AE, Sinclair DA (2019) Frailty biomarkers in humans and rodents: current approaches and future advances. Mech Ageing Dev 180:117–128. https://doi.org/10.1016/j.mad.2019.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schneider JL, Rowe JH, Garcia-de-Alba C et al (2021) The aging lung: physiology, disease, and immunity. Cell 184:1990–2019. https://doi.org/10.1016/j.cell.2021.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Talwar D, Catchpole A, Wadsworth JM et al (2020) The relationship between plasma albumin, alkaline phosphatase and pyridoxal phosphate concentrations in plasma and red cells: implications for assessing vitamin B6 status. Clin Nutr 39:2824–2831. https://doi.org/10.1016/j.clnu.2019.12.012

    Article  CAS  PubMed  Google Scholar 

  49. Pusceddu I, Herrmann W, Kleber ME et al (2020) Subclinical inflammation, telomere shortening, homocysteine, vitamin B6, and mortality: the Ludwigshafen Risk and Cardiovascular Health Study. Eur J Nutr 59:1399–1411. https://doi.org/10.1007/s00394-019-01993-8

    Article  CAS  PubMed  Google Scholar 

  50. Ni Lochlainn M, Cox NJ, Wilson T et al (2021) Nutrition and frailty: opportunities for prevention and treatment. Nutrients 13:2349. https://doi.org/10.3390/nu13072349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ueland PM, McCann A, Midttun Ø et al (2017) Inflammation, vitamin B6 and related pathways. Mol Aspects Med 53:10–27. https://doi.org/10.1016/j.mam.2016.08.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is funded by Shandong Provincial Natural Science Foundation Project, grant number ZR2020MH392; Shandong Provincial Natural Science Foundation Joint Fund for Chinese Medicine Incubation Project, grant number ZR2021LZY027; Jinan Science and Technology Innovation Development Program, grant number 202134065.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by XC, YH, ZR and GZ. The first draft of the manuscript was written by XC and YH, XC and ZQ also took part in drafting, revising, and critically reviewing the article, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xianhai Chen or Zhanjun Qiu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). NHANES was approved by the Ethics Review Board of the National Center for Health Statistics (Protocol #98-12, Protocol #2005-06, Protocol #2011-17, and Protocol #2018-01, https://www.cdc.gov/nchs/nhanes/irba98.htm). All information from the NHANES program is available and free for public, so the agreement of the medical ethics committee board was not necessary.

Informed consent

All participants provided written informed consent.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7514 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Hu, Y., Ruan, Z. et al. Association between B-vitamins intake and frailty among patients with chronic obstructive pulmonary disease. Aging Clin Exp Res 35, 793–801 (2023). https://doi.org/10.1007/s40520-023-02353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-023-02353-7

Keywords

Navigation